A Novel Preclinical Model of Germinal Matrix Hemorrhage Using Neonatal Rats

  • Tim Lekic
  • Anatol Manaenko
  • William Rolland
  • Jiping Tang
  • John H. Zhang
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 111)


Background: Germinal matrix hemorrhage (GMH) is a neurological disorder associated with very low birth weight premature infants. This event can lead to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. This study developed a novel animal model for pre-clinical investigations.

Methods: Neonatal rats underwent infusion of clostridial collagenase into the right germinal matrix (anterior caudate) region using stereotaxic techniques. Developmental milestones were evaluated over 10 days, cognitive function at 3 weeks, and sensorimotor function at 4 weeks after collagenase infusion. This was accomplished by anthropometric quantifications of cranial, cerebral, cardiac, and splenic growths.

Results: Collagenase infusion led to delays in neonatal developmental milestones, followed by cognitive and sensorimotor dysfunctions in the juvenile animals. Cranial growth was accelerated during the first week after injury, and this was followed by significant brain atrophy, splenomegaly, and cardiac hypertrophy 3 weeks later.

Conclusion: This study characterized the developmental delays, mental retardation, and cerebral palsy features resembling the long-term clinical course after germinal matrix hemorrhage in premature infants. Pre-clinical testing of therapeutics in this experimental model could lead to improved patient outcomes while expanding upon the pathophysiological understanding of this disease.


Animal models · Neurological deficits · Stroke, experimental 


  1. 1.
    Ballabh P (2010) Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res 67:1–8. doi:10.1203/PDR.0b013e3181c1b176 PubMedCrossRefGoogle Scholar
  2. 2.
    Kadri H, Mawla AA, Kazah J (2006) The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv Syst 22:1086–1090. doi:10.1007/s00381-006-0050-6 PubMedCrossRefGoogle Scholar
  3. 3.
    Vohr BR, Wright LL, Dusick AM, Mele L, Verter J, Steichen JJ, Simon NP, Wilson DC, Broyles S, Bauer CR, Delaney-Black V, Yolton KA, Fleisher BE, Papile LA, Kaplan MD (2000) Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994. Pediatrics 105:1216–1226PubMedCrossRefGoogle Scholar
  4. 4.
    Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, Horwood LJ, Volpe JJ (2002) Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 87:F37–F41PubMedCrossRefGoogle Scholar
  5. 5.
    Vermont-Oxford (1990) The Vermont-Oxford Trials Network: very low birth weight outcomes for 1990. Investigators of the Vermont-Oxford Trials Network Database Project. Pediatrics 91:540–545Google Scholar
  6. 6.
    Heron M, Sutton PD, Xu J, Ventura SJ, Strobino DM, Guyer B (2010) Annual summary of vital statistics: 2007. Pediatrics 125:4–15. doi:10.1542/peds.2009-2416 [pii] PubMedCrossRefGoogle Scholar
  7. 7.
    Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13. doi:10.1016/j.nbd.2003.12.016S0969996103002833 [pii] PubMedCrossRefGoogle Scholar
  8. 8.
    Balasubramaniam J, Del Bigio MR (2006) Animal models of germinal matrix hemorrhage. J Child Neurol 21:365–371PubMedGoogle Scholar
  9. 9.
    NINDS ICH Workshop Participants (2005) Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 36:e23–e41. doi:01.STR.0000155685.77775.4c [pii] 10.1161/01.STR.0000155685.77775.4c CrossRefGoogle Scholar
  10. 10.
    Cockle JV, Gopichandran N, Walker JJ, Levene MI, Orsi NM (2007) Matrix metalloproteinases and their tissue inhibitors in preterm perinatal complications. Reprod Sci 14:629–645. doi:14/7/629 [pii]10.1177/1933719107304563 PubMedCrossRefGoogle Scholar
  11. 11.
    Schulz CG, Sawicki G, Lemke RP, Roeten BM, Schulz R, Cheung PY (2004) MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatr Res 55:794–801. doi:10.1203/01.PDR.0000120683.68630.FB01.PDR.0000120683.68630.FB [pii] PubMedCrossRefGoogle Scholar
  12. 12.
    MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, Colbourne F (2008) Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab 28:516–525. doi:9600548 [pii]10.1038/sj.jcbfm.9600548 PubMedCrossRefGoogle Scholar
  13. 13.
    Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M (1990) Collagenase-induced intracerebral hemorrhage in rats. Stroke 21:801–807PubMedGoogle Scholar
  14. 14.
    Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT (1994) Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 81:93–102PubMedCrossRefGoogle Scholar
  15. 15.
    Foerch C, Arai K, Jin G, Park KP, Pallast S, van Leyen K, Lo EH (2008) Experimental model of warfarin-associated intracerebral hemorrhage. Stroke 39:3397–3404. doi:STROKEAHA.108.517482 [pii]10.1161/STROKEAHA.108.517482 PubMedCrossRefGoogle Scholar
  16. 16.
    Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, Tang J, Zhang JH (2010) Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J Neurotrauma 27:627–637. doi:10.1089/neu.2009.1163 PubMedCrossRefGoogle Scholar
  17. 17.
    Hartman R, Lekic T, Rojas H, Tang J, Zhang JH (2009) Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Res 1280:148–157. doi:S0006-8993(09)00957-3 [pii]10.1016/j.brainres.2009.05.038 PubMedCrossRefGoogle Scholar
  18. 18.
    Andaluz N, Zuccarello M, Wagner KR (2002) Experimental animal models of intracerebral hemorrhage. Neurosurg Clin N Am 13:385–393PubMedCrossRefGoogle Scholar
  19. 19.
    Thiex R, Mayfrank L, Rohde V, Gilsbach JM, Tsirka SA (2004) The role of endogenous versus exogenous tPA on edema formation in murine ICH. Exp Neurol 189:25–32. doi:10.1016/j.expneurol.2004.05.021S0014488604001840 [pii] PubMedCrossRefGoogle Scholar
  20. 20.
    Thullier F, Lalonde R, Cousin X, Lestienne F (1997) Neurobehavioral evaluation of lurcher mutant mice during ontogeny. Brain Res Dev Brain Res 100:22–28. doi:S0165380697000102 [pii] PubMedCrossRefGoogle Scholar
  21. 21.
    Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28:497–505. doi:S0149-7634(04)00073-9 [pii]10.1016/j.neubiorev.2004.06.006 PubMedCrossRefGoogle Scholar
  22. 22.
    Fathali N, Ostrowski RP, Lekic T, Jadhav V, Tong W, Tang J, Zhang JH (2010) Cyclooxygenase-2 inhibition provides lasting protection against neonatal hypoxic-ischemic brain injury. Crit Care Med 38:572–578. doi:10.1097/CCM.0b013e3181cb1158 PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH (2009) Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res 1270:131–139. doi:S0006-8993(09)00520-4 [pii]10.1016/j.brainres.2009.03.010 PubMedCrossRefGoogle Scholar
  24. 24.
    Saad AY (1990) Postnatal effects of nicotine on incisor development of albino mouse. J Oral Pathol Med 19:426–429PubMedCrossRefGoogle Scholar
  25. 25.
    Andine P, Thordstein M, Kjellmer I, Nordborg C, Thiringer K, Wennberg E, Hagberg H (1990) Evaluation of brain damage in a rat model of neonatal hypoxic-ischemia. J Neurosci Methods 35:253–260PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  • Tim Lekic
    • 1
  • Anatol Manaenko
    • 1
  • William Rolland
    • 1
  • Jiping Tang
    • 1
  • John H. Zhang
    • 1
    • 2
    • 3
  1. 1.Department of PhysiologyLoma Linda University, School of MedicineLoma LindaUSA
  2. 2.Department of NeurosurgeryLoma Linda University, School of MedicineLoma LindaUSA
  3. 3.Department of PhysiologyLoma Linda University, School of MedicineLoma LindaUSA

Personalised recommendations