Tissue Fusion, a New Opportunity for Sutureless Bypass Surgery

  • Serge Bogni
  • Daniel Schöni
  • Mihai Constantinescu
  • Amina Wirth
  • Istvan Vajtai
  • Amadé Bregy
  • Andreas Raabe
  • Uwe Pieles
  • Martin Frenz
  • Michael Reinert
Conference paper
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 112)

Abstract

Microsurgical suturing is the standard for cerebral bypass surgery, a technique where temporary occlusion is usually necessary. Non-occlusive techniques such as excimer laser-assisted non-occlusive anastomosis (ELANA) have certainly widened the spectrum of treatment of complex cerebrovascular situations, such as giant cerebral aneurysms, that were otherwise non-treatable. Nevertheless, the reduction of surgical risks while widening the spectrum of indications, such as a prophylactic cerebral bypass, is still a main aim, that we would like to pursue with our sutureless tissue fusion research. The primary concern in sutureless tissue fusion- and especially in tissue fusion of cerebral vessels- is the lack of reproducibility, often caused by variations in the thermal damage of the vessel. This has prevented this novel fusion technique from being applicable in daily surgical use. In this overview, we present three ways to further improve the laser tissue soldering technique.

In the first section entitled “Laser Tissue Soldering Using a Biodegradable Polymer,” a porous polymer scaffold doped with albumin (BSA) and indocyanine green (ICG) is presented, leading to strong and reproducible tensile strengths in tissue soldering. Histologies and future developments are discussed.

In the section “Numerical Simulation for Improvement of Laser Tissue Soldering,” a powerful theoretical simulation model is used to calculate temperature distribution during soldering. The goal of this research is to have a tool in hand that allows us to determine laser irradiation parameters that guarantee strong vessel fusion without thermally damaging the inner structures such as the intima and endothelium.

In a third section, “Nanoparticles in Laser Tissue Soldering,” we demonstrate that nanoparticles can be used to produce a stable and well-defined spatial absorption profile in the scaffold, which is an important step towards increasing the reproducibility. The risks of implanting nanoparticles into a biodegradable scaffold are discussed.

Step by step, these developments in sutureless tissue fusion have improved the tensile strength and the reproducibility, and are constantly evolving towards a clinically applicable anastomosis technique.

References

  1. 1.
    Antonov YA, Wolf BA (2005) Calorimetric and structural investigation of the interaction between bovine serum albumin and high molecular weight dextran in water. Biomacromolecules 6(6):2980–2989PubMedCrossRefGoogle Scholar
  2. 2.
    Barker HA (1933) The effect of water content upon the rate of heat denaturation of crystallizable egg albumin. J Gen Physiol 17(1):21–34PubMedCrossRefGoogle Scholar
  3. 3.
    Bass LS, Treat MR (1995) Laser tissue welding: a comprehensive review of current and future clinical applications. Lasers Surg Med 17(4):315–349PubMedCrossRefGoogle Scholar
  4. 4.
    Bogni S, Stumpp O, Reinert M, Frenz M (2010) Thermal model for optimization of vascular laser tissue soldering. J Biophotonics 3(5–6):284–295PubMedCrossRefGoogle Scholar
  5. 5.
    Bregy A, Alfieri A, Demertzis S, Mordasini P, Jetzer AK, Kuhlen D, Schaffner T, Dacey R, Steiger H-J, Reinert M (2008) Automated end-to-side anastomosis to the middle cerebral artery: a feasibility study. J Neurosurg 108(3):567–574PubMedCrossRefGoogle Scholar
  6. 6.
    Bregy A, Bogni S, Bernau VJP, Vajtai I, Vollbach F, Petri-Fink A, Constantinescu M, Hofmann H, Frenz M, Reinert M (2008) Solder doped polycaprolactone scaffold enables reproducible laser tissue soldering. Lasers Surg Med 40(10):716–725PubMedCrossRefGoogle Scholar
  7. 7.
    Byrd BD, Heintzelman DL, McNally-Heintzelman KM (2003) Absorption properties of alternative chromophores for use in laser tissue soldering applications. Biomed Sci Instrum 39:6–11PubMedGoogle Scholar
  8. 8.
    Cain CP, Polhamus GD, Roach WP, Stolarski DJ, Schuster KJ, Stockton KL, Rockwell BA, Chen B, Welch AJ (2006) Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes. J Biomed Opt 11(4):041109PubMedCrossRefGoogle Scholar
  9. 9.
    Constantinescu MA, Alfieri A, Mihalache G, Stuker F, Ducray A, Seiler RW, Frenz M, Reinert M (2007) Effect of laser soldering irradiation on covalent bonds of pure collagen. Lasers Med Sci 22(1):10–14PubMedCrossRefGoogle Scholar
  10. 10.
    Dacey RG, Zipfel GJ, Ashley WW, Chicoine MR, Reinert M (2008) Automated, compliant, high-flow common carotid to middle cerebral artery bypass. J Neurosurg 109(3):559–564PubMedCrossRefGoogle Scholar
  11. 11.
    Ekwall P, Mandell L, Fontell K (1970) Some observations on binary and ternary aerosol OT systems. J Colloid Interface Sci 33(2):215–235CrossRefGoogle Scholar
  12. 12.
    Fajardo LF, Schreiber AB, Kelly NI, Hahn GM (1985) Thermal sensitivity of endothelial cells. Radiat Res 103(2):276–285PubMedCrossRefGoogle Scholar
  13. 13.
    Farahnaky A, Badii F, Farhat IA, Mitchell JR, Hill SE (2005) Enthalpy relaxation of bovine serum albumin and implications for its storage in the glassy state. Biopolymers 78(2):69–77PubMedCrossRefGoogle Scholar
  14. 14.
    Hänggi D, Reinert M, Steiger H-J (2009) C Port Flex A assisted automated anastomosis high flow extracranial intracranial bypass surgery patients symptomatic carotid artery occlusion feasibility study. Clinical article. J Neurosurg 111(1):181–187PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffman GT, Soller EC, McNally-Heintzelman KM (2002) Biodegradable synthetic polymer scaffolds for reinforcement of albumin protein solders used for laser-assisted tissue repair. Biomed Sci Instrum 38:53–58PubMedGoogle Scholar
  16. 16.
    Langer DJ, Van Der Zwan A, Vajkoczy P, Kivipelto L, Van Doormaal TP, Tulleken CA (2008) Excimer laser-assisted nonocclusive anastomosis. An emerging technology for use in the creation of intracranial-intracranial and extracranial-intracranial cerebral bypass. Neurosurg Focus 24(2):E6PubMedCrossRefGoogle Scholar
  17. 17.
    Lauto A (1998) Repair strength dependence on solder protein concentration: a study in laser tissue-welding. Lasers Surg Med 22(2):120–125PubMedCrossRefGoogle Scholar
  18. 18.
    Lidman D, Daniel RK (1981) The normal healing process of microvascular anastomoses. Scand J Plast Reconstr Surg 15(2):103–110PubMedCrossRefGoogle Scholar
  19. 19.
    Macchiarelli G, Familiari G, Caggiati A, Magliocca FM, Riccardelli F, Miani A, Motta PM (1991) Arterial repair after microvascular anastomosis. Scanning and transmission electron microscopy study. Acta Anat 140(1):8–16PubMedCrossRefGoogle Scholar
  20. 20.
    Mausberg R, Visser H, Aschoff T, Donath K, Krüger W (1993) Histology of laser- and high-frequency-electrosurgical incisions in the palate of pigs. J Craniomaxillofac Surg 21(3):130–132PubMedCrossRefGoogle Scholar
  21. 21.
    McNally KM, Sorg BS, Chan EK, Welch AJ, Dawes JM, Owen ER (1999) Optimal parameters for laser tissue soldering. Part I: tensile strength scanning electron microscopy analysis. Lasers Surg Med 24(5):319–331PubMedCrossRefGoogle Scholar
  22. 22.
    McNally KM, Sorg BS, Chan EK, Welch AJ, Dawes JM, Owen ER (2000) Optimal parameters for laser tissue soldering: II. Premixed versus separate dye solder techniques. Lasers Surg Med 26(4):346–356PubMedCrossRefGoogle Scholar
  23. 23.
    Michnik A (2002) Thermal stability of bovine serum albumin DSC study. J Therm Anal Calorim 71(2):509–519CrossRefGoogle Scholar
  24. 24.
    Ott B, Constantinescu MA, Erni D, Banic A, Schaffner T, Frenz M (2004) Intraluminal laser light source and external solder: in vivo evaluation of a new technique for microvascular anastomosis. Lasers Surg Med 35(4):312–316PubMedCrossRefGoogle Scholar
  25. 25.
    Ott B, Züger BJ, Erni D, Banic A, Schaffner T, Weber HP, Frenz M (2001) Comparative in vitro study of tissue welding using a 808 nm diode laser and a Ho:YAG laser. Lasers Med Sci 16(4):260–266PubMedCrossRefGoogle Scholar
  26. 26.
    Pagnanelli DM, Pait TG, Rizzoli HV, Kobrine AI (1980) Scanning electron micrographic study of vascular lesions caused by microvascular needles and suture. J Neurosurg 53(1):32–36PubMedCrossRefGoogle Scholar
  27. 27.
    Poppas D, Sutaria P, Sosa RE, Mininberg D, Schlossberg S (1993) Chromophore enhanced laser welding of canine ureters in vitro using a human protein solder: a preliminary step for laparoscopic tissue welding. J Urol 150(3):1052–1055PubMedGoogle Scholar
  28. 28.
    Ratto F, Matteini P, Rossi F, Menabuoni L, Tiwari N, Kulkarni SK, Pini R (2009) Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine 5(2):143–151PubMedCrossRefGoogle Scholar
  29. 29.
    Rossi F, Pini R, Menabuoni L (2007) Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea. J Biomed Opt 12(1):014031PubMedCrossRefGoogle Scholar
  30. 30.
    Sahu SK, Song CW (1991) Thermal sensitivity and kinetics of thermotolerance in bovine aortic endothelial cells in culture. Int J Hyperthermia 7(1):103–111PubMedCrossRefGoogle Scholar
  31. 31.
    Shumalinsky D, Lobik L, Cytron S, Halpern M, Vasilyev T, Ravid A, Katzir A (2004) Laparoscopic laser soldering for repair of ureteropelvic junction obstruction in the porcine model. J Endourol 18(2):177–181PubMedCrossRefGoogle Scholar
  32. 32.
    Sorg BS, Welch AJ (2001) Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects. Lasers Surg Med 28(4):297–306PubMedCrossRefGoogle Scholar
  33. 33.
    Sorg BS, Welch AJ (2003) Preliminary biocompatibility experiment of polymer films for laser-assisted tissue welding. Lasers Surg Med 32(3):215–223PubMedCrossRefGoogle Scholar
  34. 34.
    Tsukada H, Takano K, Hattori M, Yoshida T, Kanuma S, Takahashi K (2006) Effect of sorbed water on the thermal stability of soybean protein. Biosci Biotechnol Biochem 70(9):2096–2103PubMedCrossRefGoogle Scholar
  35. 35.
    van Doormaal TP, van der Zwan A, Verweij BH, Han KS, Langer DJ, Tulleken CA (2008) Treatment of giant middle cerebral artery aneurysms with a flow replacement bypass using the excimer laser-assisted nonocclusive anastomosis technique. Neurosurgery 63(1):12–20, discussion 20–12PubMedCrossRefGoogle Scholar
  36. 36.
    Wang F-C, Yuan R, Chai Y-Q (2006) Direct electrochemical immunoassay based on a silica nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate. Appl Microbiol Biotechnol 72(4):671–675PubMedCrossRefGoogle Scholar
  37. 37.
    Ward PA, Till GO (1990) Pathophysiologic events related to thermal injury of skin. J Trauma 30(12 Suppl):S75–S79PubMedCrossRefGoogle Scholar
  38. 38.
    Yamasaki M, Yano H, Aoki K (1990) Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength. Int J Biol Macromol 12(4):263–268PubMedCrossRefGoogle Scholar
  39. 39.
    Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689PubMedCrossRefGoogle Scholar
  40. 40.
    Zeebregts CJ, Heijmen RH, van den Dungen JJ, van Schilfgaarde R (2003) Non-suture methods of vascular anastomosis. Br J Surg 90(3):261–271PubMedCrossRefGoogle Scholar
  41. 41.
    Zeebregts C, van den Dungen J, Buikema H, van der Want J, van Schilfgaarde R (2001) Preservation of endothelial integrity and function in experimental vascular anastomosis with non-penetrating clips. Br J Surg 88(9):1201–1208PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  • Serge Bogni
    • 1
  • Daniel Schöni
    • 2
  • Mihai Constantinescu
    • 3
  • Amina Wirth
    • 4
  • Istvan Vajtai
    • 5
  • Amadé Bregy
    • 2
  • Andreas Raabe
    • 2
  • Uwe Pieles
    • 4
  • Martin Frenz
    • 1
  • Michael Reinert
    • 1
    • 6
  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland
  2. 2.Department of NeurosurgeryInselspital Bern, University of BernBernSwitzerland
  3. 3.Department of Plastic and Reconstructive SurgeryInselspital Bern, University of BernBernSwitzerland
  4. 4.Institute for Chemistry and BioanalyticsFachhochschule NordwestschweizBaselSwitzerland
  5. 5.Institute of PathologyUniversity of BernBernSwitzerland
  6. 6.Department of NeurosurgeryInselspital BernBernSwitzerland

Personalised recommendations