A role of glial fibrillary acidic protein in hippocampal degeneration after cerebral trauma or kainate-induced seizure

  • Naoki Otani
  • H. Nawashiro
  • N. Nomura
  • S. Fukui
  • N. Tsuzuki
  • S. Ishihara
  • K. Shima
Conference paper
Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 86)

Abstract

Astrocytes perform a variety of functions in the adult central nervous system (CNS). Recent evidence suggests the robust upregulation of glial fibrillary acidic protein (GFAP) after CNS insult. However, little is known about the role of GFAP in the hippocampal degeneration after brain injury. We herein compared the GFAP knockout (KO) and wild type (WT) mice on the histological and behavioral outcome in response to cerebral trauma or kainic acid (KA)-induced seizure. Although all KO mice showed hippocampal CA3 neuronal degeneration, WT mice did not show any neuronal degeneration in CA3 subfield at 72 hrs after trauma. Thereafter, KO mice showed a higher susceptibility to KA-induced seizures and an increased number of pyknotic CA3 neurons 72 hrs after KA administration. These results indicate that GFAP plays a crucial role in the hippocampal neurodegeneration after CNS insult.

Keywords

Astrocytes glial fibrillary acidic protein hippocampus excitotoxicity kainate seizures traumatic brain injury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bjorklund H, Olson L, Dahl D et al (1986) Short-and long-term consequences of intracranial injections of the excitotoxin, quinolinic acid, as evidenced by GFA immunohistochemistry of astrocytes. Brain Res 371: 267–277PubMedCrossRefGoogle Scholar
  2. 2.
    Brenner M (1994) Structure and transcript ional regulation of the GFAP gene. Brain Pathol 4: 245–257PubMedCrossRefGoogle Scholar
  3. 3.
    Gomi H, Yokoyama T, Fujimoto K et al (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14: 29–41PubMedCrossRefGoogle Scholar
  4. 4.
    Hu RQ, Koh S, Torgerson T et al (1998) Neuronal stress and injury in C57/BL mice after systemic kainic acid administration. Brain Res 810: 229–240PubMedCrossRefGoogle Scholar
  5. 5.
    Lenz G, Manozzo L, Gottardo S et al (1997) Temporal profiles of the in vitro phosphorylation rate and immunocontent of glial fibrillary acidic protein (GFAP) after kainic acid-induced lesions in area CA1 of the rat hippocampus: demonstration of a novel phosphoprotein associated with gliosis. Brain Res 764: 188–196PubMedCrossRefGoogle Scholar
  6. 6.
    Liedtke W, Edelmann W, Bieri PL et al (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17: 607–615PubMedCrossRefGoogle Scholar
  7. 7.
    Nawashiro H, Messing A, Azzam N et al (1998) Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9: 1691–1696PubMedCrossRefGoogle Scholar
  8. 8.
    Sporbert A, Mertsch K, Smolenski A et al (1999) Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide-and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes. Brain Res Mol Brain Res 20: 258–266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Naoki Otani
    • 1
  • H. Nawashiro
    • 1
  • N. Nomura
    • 1
  • S. Fukui
    • 1
  • N. Tsuzuki
    • 1
  • S. Ishihara
    • 1
  • K. Shima
    • 1
  1. 1.Department of NeurosurgeryNational Defense Medical CollegeSaitamaJapan

Personalised recommendations