Temporal profile of experimental ischemic edema after threshold amount of insult to induce infarction — ultrastructure, gravimetry and Evans’ blue extravasation

  • Umeo ItoEmail author
  • T. Kuroiwa
  • S. Hanyu
  • Y. Hakamata
  • E. Kawakami
  • I. Nakano
  • K. Oyanagi
Conference paper
Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 86)


When a threshold amount of temporary ischemic insult to induce focal infarction was given to the unilateral cerebral hemisphere of gerbils, a small focal infarct surrounded by a wide penumbra developed in the rostral portion of the cerebral cortex. During the first 5 hours following recirculation, whole astrocytic cell bodies and processes in the ischemic hemisphere were swollen, with an increase in the number of glycogen granules and in number and size of mitochondria. This swelling was an active reaction of astrocytes for neuronal protection, scavenging potassium, glutamate, and other neuronal metabolic products, and for generating fuels-for neurons (cyto-reactive edema). This reactive astrocytic swelling continued in the penumbra, but some dead neurons were found disseminated among the surviving neurons. Whereas, at 12–48 hours, focal infarction developed in which all cell membranes lost their GibbsDonnan’s equilibrium due to energetic failure of their membranous Na+/K+ ATPase. This is the cytotoxic edema (cyto-necrotic edema). In the infarct focus, when pericapillary astrocytic end-feet were damaged, the capillary BBB was broken; and thus vasogenic edema was superimposed on the cytotoxic edema.


Cerebral ischemia ischemic brain edema penumbra infarction cytotoxic edema vasogenic edema cyto-reactive edema cyto-necrotic edema disseminated selective neuronal necrosis (DSNN) glycogen granules astrocytic mitochondria extracellular space intracellular space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coles JA (1995) Glial cells and the supply of substra tes of energy metabolism to neurons, Neuroglia. In: Kettenmann H, Ransom B (eds), Oxford University Press, New York Oxford, pp 793–804Google Scholar
  2. 2.
    Hakamata Y, Hanyu S, Kuroiwa T, Ito U (1997) Brain edema associated with progressive selective neuronal death or impending infarction in the cerebral cortex. Acta Neurochir (Wien) [Suppl] 70: 20–22Google Scholar
  3. 3.
    Hamprecht B, Dringen R (1995) Energy metabolism. Neuroglia. In: Kettenmann H, Ransom B (eds), Oxford University Press, New York Oxford, pp 473–487Google Scholar
  4. 4.
    Hanyu S, Ito U, Hakamata Y, Yoshida M (1995) Tran sition from ischemic neuronal necrosis to infarction in repeated ischemia. Brain Res 686: 44–48PubMedCrossRefGoogle Scholar
  5. 5.
    Ito U, Spatz M, Walker J Jr, Klatzo I (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol 32(3): 209–223PubMedCrossRefGoogle Scholar
  6. 6.
    Ito U, Ohno K, Nakamura R, Suganuma F, Inaba Y (1970) Brain edema during ischemia and after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10: 542–547CrossRefGoogle Scholar
  7. 7.
    Ito U, Hanyu S, Hakamata Y, Nakamura M, Arima K (1997) Ultra structure of astrocytes associated with selective neuronal death of cerebral cortex after repeated ischemia. Acta Neurochir (Wien) [Suppl] 70: 46–49Google Scholar
  8. 8.
    Ito U, Hanyu S, Hakamata Y, Arima K, Oyanagi K, Kuroiwa T, Nakano I (1999) Temporal profile of cortical injury following ischemic insult just-below and at the threshold level for induction of infarction-light and electron microscopic study. Maturation phenomenon in cerebral ischemia III. Springer, Berlin Heidelberg New York Tokyo, pp 227–235CrossRefGoogle Scholar
  9. 9.
    Ito U, Kuroiwa T, Hanyu S, Hakamata Y, Ito S, Nakano I, Oyanagi K (2000) Ultrastructure and morphometry of astroglial mitochondria following temporary ischemia. Maturation phenomenon in cerebral ischemia IV. In: Bazan NG, Ito U, Marcheselli VL, Kuroiwa T, Klatzo IE (eds), Springer, Berlin Heidelberg New York Tokyo, pp 253–259Google Scholar
  10. 10.
    Katzmann R, Classen CR, Klatzo I, Meyer JS, Waltz AG (1977) Report of joint committee for stroke resources IV. Brain edema in stroke. Study group on brain edema in stroke. Stroke 8: 513–540CrossRefGoogle Scholar
  11. 11.
    Kempski O, Volk C (1996) Glial protection against neuronal damage. Maturation phenomenon in cerebral ischemia II. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  12. 12.
    Kimelberg HK, Rutledge E, Goderie S, Chamiga C (1995) Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J Cereb Blood Flow Metab 15(3): 409–416PubMedCrossRefGoogle Scholar
  13. 13.
    Kraig RP, Lascola CD, Caggiano A (1995) Glial response to brain ischemia. Neuroglia. In: Kettenmann H, Ransom B (eds), Oxford University Press, New York Oxford, pp 964–976Google Scholar
  14. 14.
    Kuroiwa T, Mies G, Hakamata Y, Hanyu S, Okeda R, Ito U (1999) Mitochondrial dysfunction and maturation phenomenon in ischemic gerbil cortex. Maturation phenomenon in cerebral ischemia III ed. In: Ito U, Orzi F, Kuroiwa T, Fieschi C, Klatzo IE (eds), Springer, Berlin Heidelberg New York Tokyo, pp 237–241CrossRefGoogle Scholar
  15. 15.
    Kuroiwa T, Mies G, Hermann D, Hakamata Y, Hanyu S, Ito U (2000) Regional differences in the rate of energy impairment after threshold level ischemia for induction of cerebral infarction in gerbils. Acta Neuropathol 100: 587–594PubMedCrossRefGoogle Scholar
  16. 16.
    Martin DL (1995) The role of glia in the inactivation of neurotransmitters. Neuroglia. In: Kettenmann H, Ransom B (eds), Oxford University Press, New York Oxford, pp 732–745Google Scholar
  17. 17.
    Newman EA (1995) Glial cell regulation of extracellular potassium. Neuroglia. In: Kettenmann H, Ransom B (eds), Oxford University Press, New York Oxford, pp 717–731Google Scholar
  18. 18.
    Noble LJ, Hall JJ, Chen S, Chan PH (1992) Morphologic changes in cultured astrocytes after exposure to glutamate. J Neurotrauma 9: 255–267PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenberg GA, Aizeman E (1989) Hundred-fo ld increase in neuronal vulnerability to glultamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neuroscience (Lett) 103: 162–168CrossRefGoogle Scholar
  20. 20.
    Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J Neurosurg 77: 169–184PubMedCrossRefGoogle Scholar
  21. 21.
    Sonnewald U, Hertz L, Schousboe A (1998) Mitochondrial heterogeneity in the brain at the cellular level. J Cereb Blood Flow Metab 18(3): 231–237PubMedCrossRefGoogle Scholar
  22. 22.
    Staub F, Baethmann A, Peters J, Weight H, Kempski O (1990) Effects of lactacidosis on glial cell volume and viability. J Cereb Blood Flow Metab 10: 866–876PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Umeo Ito
    • 1
    • 3
    Email author
  • T. Kuroiwa
    • 2
  • S. Hanyu
    • 3
  • Y. Hakamata
    • 3
  • E. Kawakami
    • 1
  • I. Nakano
    • 3
  • K. Oyanagi
    • 1
  1. 1.Department of NeuropathologyTokyo Metropolitan Institute for NeuroscienceTokyoJapan
  2. 2.Department of Neuropathology, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
  3. 3.Department of NeurologyJichi Medical SchoolTochigiJapan

Personalised recommendations