Functional Neuronavigation and Intraoperative MRI

  • C. Nimsky
  • O. Ganslandt
  • R. Fahlbusch


Our concept of computer assisted surgery is based on the combination of intraoperative magnetic resonance (MR) imaging with microscope-based neuronavigation, providing anatomical and functional guidance simultaneously. Intraoperative imaging evaluates the extent of a resection, while the additional use of functional neuronavigation, which displays the position of eloquent brain areas in the operative field, prevents increasing neurological deficits, which would otherwise result from extended resections.

Up to mid 2001 we performed intraoperative MR imaging using a low-field 0.2 Tesla scanner in 330 patients. The main indications were the evaluation of the extent of resection in gliomas, pituitary tumours, and in epilepsy surgery. Intraoperative MR imaging proved to serve as intraoperative quality control with the possibility of an immediate modification of the surgical strategy, i.e. extension of the resection. Integrated use of functional neuronavigation prevented increased neurological deficits. Compared to routine pre-or postoperative imaging being performed with high-Tesla machines, intraoperative image quality and sequence spectrum could not compete. This led to the development of the concept to adapt a high-field MR scanner to the operating environment, preserving the benefits of using standard microsurgical equipment and microscope-based neuro-navigational guidance with integrated functional data, which was successfully implemented by April 2002. Up to the end of 2002, 95 patients were investigated with the new setup. Improved image quality, intraoperative workflow, as well as enhanced sophisticated intraoperative imaging possibilities are the major benefits of the high-field setup.


Epilepsy surgery functional imaging functional MR imaging functional neuronavigation glioma surgery intraoperative imaging high-field MR imaging low-field MR imaging magnetoencephalography pituitary tumour surgery. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammirati M, Galicich JH, Arbit E, Liao Y (1987) Reoperation in the treatment of recurrent intracranial malignant gliomas. Neurosurgery 21: 607–614PubMedGoogle Scholar
  2. 2.
    Atlas SW, Howard RS, Maldjian J, Alsop D, Detre JA, Listerud J, DʼEsposito M, Judy KD, Zager E, Stecker M (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38: 329–338PubMedGoogle Scholar
  3. 3.
    Ball T, Schreiber A, Feige B, Wagner M, Lucking CH, Kristeva-Feige R (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10: 682–694PubMedGoogle Scholar
  4. 4.
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30: 161–173PubMedGoogle Scholar
  5. 5.
    Baumann SB, Noll DC, Kondziolka OS, Schneider W, Nichols TE, Mintun MA, Lewine JD, Yonas H, Orrison WW Jr, Sclabassi RJ (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1: 191–197PubMedGoogle Scholar
  6. 6.
    Beisteiner R, Erdler M, Teichtmeister C, Diemling M, Moser E, Edward V, Deecke L (1997) Magnetoencephalography may help to improve functional MRI brain mapping. Eur J Neurosci 9: 1072–1077PubMedGoogle Scholar
  7. 7.
    Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7: 1121–1124PubMedGoogle Scholar
  8. 8.
    Black PM (1999) Surgery for cerebral gliomas: past, present and future. In: Howard III MA, Elliott JP, Haglund MM, McKhann II GM (Eds) Clinical neurosurgery. Lippincott Williams & Wilkins, Boston, pp 21-45Google Scholar
  9. 9.
    Black PM, Alexander III E, Martin C, Moriarty T, Nabavi A, Wong TZ, Schwartz RB, Jolesz F (1999) Craniotomy for tumor treatment in an intra-operative magnetic resonance imaging unit. Neurosurgery 45: 423–433PubMedGoogle Scholar
  10. 10.
    Black PM, Moriarty T, Alexander III E, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41: 831–845PubMedGoogle Scholar
  11. 11.
    Bohinski RJ, Kokkino AK, Warnick RE, Gaskill-Shipley MF, Kormos DW, Lukin RR, Tew JM Jr (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48: 731–744PubMedGoogle Scholar
  12. 12.
    Bradley WG (2002) Achieving gross total resection of brain tumors: intraoperative MR imaging can make a big difference. AJNR Am J Neuroradiol 23: 348–349PubMedGoogle Scholar
  13. 13.
    Buchfelder M, Fahlbusch R, Ganslandt O, Stefan H, Nimsky C (2002) Use of intraoperative magnetic resonance imaging in tailored temporal lobe surgeries for epilepsy. Epilepsia 43: 864–873PubMedGoogle Scholar
  14. 14.
    Buchfelder M, Ganslandt O, Fahlbusch R, Nimsky C (2000) Intraoperative magnetic resonance imaging in epilepsy surgery. J Magn Reson Imaging 12: 547–555PubMedGoogle Scholar
  15. 15.
    Butler WE, Piaggio CM, Constantinou C, Niklason L, Gonzalez RG, Cosgrove GR, Zervas NT (1998) A mobile computed tomographic scanner with intraoperative and intensive care unit applications. Neurosurgery 42: 1304–1311PubMedGoogle Scholar
  16. 16.
    Cabantog AM, Bernstein M (1994) Complications of first craniotomy for intra-axial brain tumour. Can J Neurol Sci 21: 213–218PubMedGoogle Scholar
  17. 17.
    Ciric I, Ammirati M, Vick N, Mikhael M (1987) Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection. Neurosurgery 21: 21–26PubMedGoogle Scholar
  18. 18.
    Coenen VA, Krings T, Mayfrank L, Polin RS, Reinges MH, Thron A, Gilsbach JM (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49: 86–93PubMedGoogle Scholar
  19. 19.
    Connelly A, Jackson GD, Frackowiak RS, Belliveau JW, Vargha-Khadem F, Gadian DG (1993) Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology 188: 125–130PubMedGoogle Scholar
  20. 20.
    Cosgrove GR, Buchbinder BR, Jiang H (1996) Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am 7: 313–322PubMedGoogle Scholar
  21. 21.
    Cox RW, Hyde JS (1997) Software tools for analysis and visualization of fMRI data. NMR Biomed 10: 171–178PubMedGoogle Scholar
  22. 22.
    Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22: 604–612PubMedGoogle Scholar
  23. 23.
    Fadul C, Wood J, Thaler H, Galicich J, Patterson RH Jr, Posner JB (1988) Morbidity and mortality of craniotomy for excision of supratentorial gliomas. Neurology 38: 1374–1379PubMedGoogle Scholar
  24. 24.
    Fahlbusch R, Ganslandt O, Buchfelder M, Schott W, Nimsky C (2001) Intraoperative magnetic resonance imaging during transsphenoidal surgery. J Neurosurg 95: 381–390PubMedGoogle Scholar
  25. 25.
    Ferrant M, Warfield SK, Nabavi A, Jolesz F, Kikinis R (2000) Registration of 3D intraoperative MR images of the brain using a finite element bio-mechanical model. In: Delp SL, DiGioia AM, Jaramaz B (Eds) Medical image computing and computer-assisted intervention – MICCAI 2000. Springer, Berlin Heidelberg New York Tokyo, pp 19–28Google Scholar
  26. 26.
    Fried I, Nenov VI, Ojemann SG, Woods RP (1995) Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg 83: 854–861PubMedGoogle Scholar
  27. 27.
    Gallen CC, Schwartz BJ, Bucholz RD, Malik G, Barkley GL, Smith J, Tung H, Copeland B, Bruno L, Assam S et al (1995) Presurgical localization of functional cortex using magnetic source imaging. J Neurosurg 82: 988–994PubMedGoogle Scholar
  28. 28.
    Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, Romstock J, Vieth J (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91: 73–79PubMedGoogle Scholar
  29. 29.
    Ganslandt O, Steinmeier R, Kober H, Vieth J, Kassubek J, Romstock J, Strauss C, Fahlbusch R (1997) Magnetic source imaging combined with image-guided frameless stereotaxy: a new method in surgery around the motor strip. Neurosurgery 41: 621–628PubMedGoogle Scholar
  30. 30.
    Grunert P, Muller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3: 166–173PubMedGoogle Scholar
  31. 31.
    Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48: 799–809PubMedGoogle Scholar
  32. 32.
    Hall WA, Kowalik K, Liu H, Truwit CL, Kucharezyk J (2003) Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir (Wien) [Suppl] 85: 137–142Google Scholar
  33. 33.
    Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE, Truwit CL (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46: 632–642PubMedGoogle Scholar
  34. 34.
    Hall WA, Martin A, Liu H, Truwit CL (2001) Improving diagnostic yield in brain biopsy: coupling spectroscopic targeting with real-time needle placement. J Magn Reson Imaging 13: 12–15PubMedGoogle Scholar
  35. 35.
    Hall WA, Martin AJ, Liu H, Nussbaum ES, Maxwell RE, Truwit CL (1999) Brain biopsy using high-field strength interventional magnetic resonance imaging. Neurosurgery 44: 807–814PubMedGoogle Scholar
  36. 36.
    Hammoud MA, Ligon BL, elSouki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84: 737–741PubMedGoogle Scholar
  37. 37.
    Hastreiter P, Engel K, Soza G, Bauer M, Wolf M, Ganslandt O, Fahlbusch R, Greiner G, Ertl T, Nimsky C (2001) Remote Analysis for Brain Shift Compensation. In: Niessen W, Viergever M (Eds) Medical image computing and computer assisted intervention 4th international conference. Springer, Berlin Heidelberg New York Tokyo, pp 1248–1249Google Scholar
  38. 38.
    Hata N, Dohi T, Iseki H, Takakura K (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 41: 608–614PubMedGoogle Scholar
  39. 39.
    Hum B, Feigenbaum F, Cleary K, Henderson F (2000) Intraoperative computed tomography for complex craniocervical operations and spinal tumor resections. Neurosurgery 47: 374–381PubMedGoogle Scholar
  40. 40.
    Hund M, Rezai AR, Kronberg E, Cappell J, Zonenshayn M, Ribary U, Kelly PJ, Llinas R (1997) Magnetoencephalographic mapping: basic of a new functional risk profile in the selection of patients with cortical brain lesions. Neurosurgery 40: 936–943PubMedGoogle Scholar
  41. 41.
    Inoue T, Shimizu H, Nakasato N, Kumabe T, Yoshimoto T (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage 10: 738–748PubMedGoogle Scholar
  42. 42.
    Jack CR Jr, Thompson RM, Butts RK, Sharbrough FW, Kelly PJ, Hanson DP, Riederer SJ, Ehman RL, Hangiandreou NJ, Cascino GD (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190: 85–92PubMedGoogle Scholar
  43. 43.
    Jödicke A, Deinsberger W, Erbe H, Kriete A, Böker DK (1998) Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invas Neurosurg 41: 13–19Google Scholar
  44. 44.
    Kabuto M, Kubota T, Kdobayashi H, Handa Y, Sato K, Ishii H, Takeuchi H, Uno H, Arishima H, Ido K, Ueda Y, Adachi M, Ishida M, Hasegawa Y, Yanagimoto M, Goto Y (1998) Intraoperative CT imaging system using a mobile CT scanner gantry mounted on floor-embedded rails for neurosurgery. No To Shinkei 50: 1003–1008PubMedGoogle Scholar
  45. 45.
    Kahn T, Schwabe B, Bettag M, Harth T, Ulrich F, Rassek M, Schwarzmaier HJ, Modder U (1996) Mapping of the cortical motor hand area with functional MR imaging and MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. Work in progress. Radiology 200: 149–157PubMedGoogle Scholar
  46. 46.
    Kaibara T, Myles ST, Lee MA, Sutherland GR (2002) Optimizing epilepsy surgery with intraoperative MR imaging. Epilepsia 43: 425–429PubMedGoogle Scholar
  47. 47.
    Kaibara T, Saunders JK, Sutherland GR (2000) Advances in mobile intraoperative magnetic resonance imaging. Neurosurgery 47: 131–138PubMedGoogle Scholar
  48. 48.
    Kamada K, Takeuchi F, Kuriki S, Oshiro O, Houkin K, Abe H (1993) Functional neurosurgical simulation with brain surface magnetic resonance images and magnetoencephalography. Neurosurgery 33: 269–273PubMedGoogle Scholar
  49. 49.
    Keles GE, Lamborn KR, Berger MS (2001) Low-grade hemisphericgliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 95: 735–745PubMedGoogle Scholar
  50. 50.
    Knauth M, Aras N, Wirtz CR, Dorfler A, Engelhorn T, Sartor K (1999) Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol 20: 1547–1553PubMedGoogle Scholar
  51. 51.
    Knauth M, Wirtz CR, Tronnier VM, Aras N, Kunze S, Sartor K (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20: 1642–1646PubMedGoogle Scholar
  52. 52.
    Kober H, Grummich P, Vieth J (1995) Fit of the digitized head surface with the surface reconstructed from MRI tomography. In: Baumgartner C (Ed) Biomagnetism: fundamental research and clinical applications. Elsevier Science, IOS Press, Amsterdam, pp 309–312Google Scholar
  53. 53.
    Kober H, Möller M, Nimsky C, Vieth J, Fahlbusch R, Ganslandt O (2001) New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 14: 236–250PubMedGoogle Scholar
  54. 54.
    Kober H, Nimsky C, Möller M, Hastreiter P, Fahlbusch R, Ganslandt O (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14: 1214–1228PubMedGoogle Scholar
  55. 55.
    Kowalczuk A, Macdonald RL, Amidei C, Dohrmann III G, Erickson RK, Hekmatpanah J, Krauss S, Krishnasamy S, Masters G, Mullan SF, mundt AJ, Sweeney P, Vokes EE, Weir BKA, Wollmann RL (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41: 1028–1038PubMedGoogle Scholar
  56. 56.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679PubMedGoogle Scholar
  57. 57.
    Latchaw RE, Hu X, Ugurbil K, Hall WA, Madison MT, Heros RC (1995) Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery 37: 619–625PubMedGoogle Scholar
  58. 58.
    Leahy RM, Mosher JC, ME S, MX H, Lewine JD (1998) A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroenceph Clin Neurophysiol 107: 159–173PubMedGoogle Scholar
  59. 59.
    LeRoux PD, Winter TC, Berger MS, Mack LA, Wang K, Elliott lP (1994) A comparison between preoperative magnetic resonance and intraoperative ultrasound tumor volumes and margins. J Clin Ultrasound 22: 29–36PubMedGoogle Scholar
  60. 60.
    Lewin JS (1999) Interventional MR imaging: concepts, systems, and applications in neuroradiology. AJNR Am J Neuroradiol 20: 735–748PubMedGoogle Scholar
  61. 61.
    Lunsford LD, Parrish R, Albright L (1984) Intraoperative imaging with a therapeutic computed tomographic scanner. Neurosurgery 15: 559–561PubMedGoogle Scholar
  62. 62.
    Lunsford LD, Rosenbaum AE, Perry J (1982) Stereotactic surgery using the “therapeutic” CT scanner. Surg Neurol 18: 116–122PubMedGoogle Scholar
  63. 63.
    Maldjian J, Atlas SW, Howard RS, Greenstein E, Alsop D, Detre JA, Listerud J, DʼEsposito M, Flamm ES (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 84: 477–483PubMedGoogle Scholar
  64. 64.
    Maldjian JA, Schulder M, Liu WC, Mun IK, Hirschorn D, Murthy R, Carmel P, Kalnin A (1997) Intraoperative functional MRI using a real-time neurosurgical navigation system. J Comput Assist Tomogr 21: 910–912PubMedGoogle Scholar
  65. 65.
    Martin CH, Schwartz R, Jolesz F, Black PM (1999) Transsphenoidal resection of pituitary adenomas in an intraoperative MRI unit. Pituitary 2: 155–162PubMedGoogle Scholar
  66. 66.
    Matula C, Rossler K, Reddy M, Schindler E, Koos WT (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow. Comput Aided Surg 3: 174–182PubMedGoogle Scholar
  67. 67.
    Miga MI, Paulsen KD, Hoopes PJ, Kennedy FE, Hartov A, Roberts OW (2000) In vivo modeling of interstitial pressure in the brain under surgical load using finite element s. J Biomech Eng 122: 354–363PubMedGoogle Scholar
  68. 68.
    Möller M, Kober H, Ganslandt O, Nimsky C, Vieth J, Fahlbusch R (1999) Functional mapping of speech evoked brain activity by magnetoencephalography and its clinical application. Biomed Tech (Berl) 44: 159–161Google Scholar
  69. 69.
    Morioka T, Yamamoto T, Katsuta T, Fujii K, Fukui M (1994) Presurgical three-dimensional magnetic source imaging of the somatosensory cortex in a patient with a peri-Rolandic lesion: technical note. Neurosurgery 34: 930–934PubMedGoogle Scholar
  70. 70.
    Mueller WM, Yetkin FZ, Hammeke TA, Morris GL, Swanson SJ, Reichert K, Cox R, Haughton VM (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39: 515–520PubMedGoogle Scholar
  71. 71.
    Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM, 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48: 787–798PubMedGoogle Scholar
  72. 72.
    Nicolato A, Gerosa MA, Fina P, Iuzzolino P, Giorgiutti F, Bricolo A (1995) Prognostic factors in low-grade supratentorial astrocytomas: a uni-multivariate statistical analysis in 76 surgically treated adult patients. Surg Neurol 44: 208–223PubMedGoogle Scholar
  73. 73.
    Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R (2002) Glioma surgery evaluated by intraoperative low-field magnetic resonance imaging. Acta Neurochir (Wien) [Suppl] 85: 55–63Google Scholar
  74. 74.
    Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47: 1070–1080PubMedGoogle Scholar
  75. 75.
    Nimsky C, Ganslandt O, Fahlbusch R (2002) From intraoperative patient transport to surgery in the fringe field -intraoperative application of magnetic resonance imaging using a 0.2-Tesla scanner: the Erlangen experience. Tech Neurosurg 7: 265–273Google Scholar
  76. 76.
    Nimsky C, Ganslandt O, Fahlbusch R (2002) How to implement high-field intraoperative magnetic resonance imaging. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC (Eds) CARS2002. Springer, Berlin Heidelberg New York Tokyo, pp 139–143Google Scholar
  77. 77.
    Nimsky C, Ganslandt O, Fischer H, Oppelt A, Vetter T, Distler P, Kuth R (2000) Kombination aus Kopffixation und Kopfspule für neurochirurgische Operationen. Siemens Technik Report 3: 64–65Google Scholar
  78. 78.
    Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56: 357–364PubMedGoogle Scholar
  79. 79.
    Nimsky C, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48: 1082–1091PubMedGoogle Scholar
  80. 80.
    Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44: 1249–1256PubMedGoogle Scholar
  81. 81.
    Nimsky C, Ganslandt O, Tomandl B, Buchfelder M, Fahlbusch R (2002) Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. Eur Radiol 12: 2690–2703PubMedGoogle Scholar
  82. 82.
    Ogawa S, Lee CC, Kay AR, Tank OW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872PubMedGoogle Scholar
  83. 83.
    Okudera H, Kyoshima K, Kobayashi S, Sugita K (1994) Intraoperative CT scan findings during resection of glial tumours. Neurol Res 16: 265–267PubMedGoogle Scholar
  84. 84.
    Okudera H, Takemae T, Kobayashi S (1993) Intraoperative computed tomographic scanning during transsphenoidal surgery: technical note. Neurosurgery 32: 1041–1043PubMedGoogle Scholar
  85. 85.
    Olivier A, Alonso-Vanegas M, Comeau R, Peters TM (1996) Image-guided surgery of epilepsy. Neurosurg Clin N Am 7: 229–243PubMedGoogle Scholar
  86. 86.
    Olivier A, Germano IM, Cukiert A, Peters T (1994) Frameless stereotaxy for surgery of the epilepsies: preliminary experience. Technical note. J Neurosurg 81: 629–633PubMedGoogle Scholar
  87. 87.
    Orrison WW Jr, Rose DF, Hart BL, Maclin EL, Sanders JA, Willis BK, Marchand EP, Wood CC, Davis LE (1992) Noninvasive preoperative cortical localization by magnetic source imaging. AJNR Am J Neuroradiol 13: 1124–1128PubMedGoogle Scholar
  88. 88.
    Pergolizzi RS Jr, Nabavi A, Schwartz RB, Hsu L, Wong TZ, Martin C, Black PM, Jolesz FA (2001) Intra-operative MR guidance during transsphenoidal pituitary resection: preliminary results. J Magn Reson Imaging 13: 136–141PubMedGoogle Scholar
  89. 89.
    Poline JB, Vandenberghe R, Holmes AP, Friston KJ, Frackowiak RS (1996) Reproducibility of PET activation studies: lessons from a multi-center European experiment. EU concerted action on functional imaging 4: 34–54Google Scholar
  90. 90.
    Pujol J, Conesa G, Deus J, Vendrell P, Isamat F, Zannoli G, Marti VJ, Capdevila A (1996) Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg 84: 7–13PubMedGoogle Scholar
  91. 91.
    Rezai AR, Hund M, Kronberg E, Zonenshayn M, Cappell J, Ribary U, Kall B, Llinas R, Kelly PJ (1996) The interactive use of magnetoencephalography in stereotactic image-guided neurosurgery. Neurosurgery 39: 92–102PubMedGoogle Scholar
  92. 92.
    Righini A, de DO, Prinster A, Spagnoli D, Appollonio I, Bello L, Scifo P, Tomei G, Villani R, Fazio F, Leonardi M (1996) Functional MRI: primary motor cortex localization in patients with brain tumors. J Comput Assist Tomogr 20: 702–708PubMedGoogle Scholar
  93. 93.
    Roberts OW, Jobst BC, Siegel AM, Lewis PJ, Darcey TM, Thadani VM, Williamson PD (2001) Investigation of extra-temporal epilepsy. Stereotact Funct Neurosurg 77: 216–218PubMedGoogle Scholar
  94. 94.
    Roberts TP, Zusman E, McDermott M, Barbaro N, RowleyHA (1995) Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. J Image Guid Surg 1: 339–347PubMedGoogle Scholar
  95. 95.
    Roberts TPL, Rowley HA (1997) Mapping of the sensorimotor cortex: functional MR and magnetic source imaging. AJNR Am J Neuroradiol 18: 871–880PubMedGoogle Scholar
  96. 96.
    Romstöck J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C (2002) Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 72: 221–229PubMedGoogle Scholar
  97. 97.
    Rubin JM, Quint DJ (2000) Intraoperative US versus intraoperative MR imaging for guidance during intracranial neurosurgery. Radiology 215: 917–918 (letter)Google Scholar
  98. 98.
    Rubino GJ, Farahani K, McGill D, Van De Wiele B, Villablanca JP, Wang-Mathieson A (2000) Magnetic resonance imaging-guided neurosurgery in the magnetic fringe fields: the next step in neuronavigation. Neurosurgery 46: 643–654PubMedGoogle Scholar
  99. 99.
    Schneider JP, Schulz T, Schmidt F, Dietrich J, Lieberenz S, Trantakis C, Seifert V, Kellermann S, Schober R, Schaffranietz L, Laufer M, Kahn T (2001) Gross-total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. AJNR Am J Neuroradiol 22: 89–98PubMedGoogle Scholar
  100. 100.
    Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94: 936–945PubMedGoogle Scholar
  101. 101.
    Schulder M, Maldjian JA, Liu WC, Holodny AI, Kalnin AT, Mun IK, Carmel PW (1998) Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg 89: 412–418PubMedGoogle Scholar
  102. 102.
    Schwartz RB, Hsu L, Wong TZ, Kacher DF, Zamani AA, Black PM, Alexander III E, Stieg PE, Moriarty TM, Martin CA, Kikinis R, lolesz FA (1999) Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211: 477–488PubMedGoogle Scholar
  103. 103.
    Schwartz TH, Marks D, Pak J, Hill J, Mandelbaum DE, Holodny AI, Schulder M (2002) Standardization of amygdalohippocampectomy with intraoperative magnetic resonance imaging: preliminary experience. Epilepsia 43: 430–436PubMedGoogle Scholar
  104. 104.
    Schwartz TH, Resor SRJ, De La Paz R, Goodman RR (1998) Functional magnetic resonance imaging localization of ictal onset to a dysplastic cleft with simulatneous sensorimotor mapping: intraoperative electrophysiological confirmation and postoperative follow-up: technical note. Neurosurgery 43: 639–645PubMedGoogle Scholar
  105. 105.
    Segebarth C, Belle V, Delon C, Massarelli R, Decety J, Le Bas JF, Decorps M, Benabid AL (1994) Functional MRI of the human brain: predominance of signals from extracerebral veins Neuroreport 5: 813–816Google Scholar
  106. 106.
    Seifert V, Zimmermann M, Trantakis C, Vitzthum HE, Kuhnel K, Raabe A, Bootz F, Schneider JP, Schmidt F, Dietrich J (1999) Open MRI-guided neurosurgery. Acta Neurochir (Wien) 141: 455–464Google Scholar
  107. 107.
    Stehling MK, Turner R, Mansfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254: 43–50PubMedGoogle Scholar
  108. 108.
    Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures. A preliminary report. Neurosurgery 43: 739–748PubMedGoogle Scholar
  109. 109.
    Stippich C, Freitag P, Kassubek J, Sörös P, Kamada K, Kober H, Scheffler K, Hopfengartner R, Bilecen D, Radii E-W, Vieth J (1998) Motor, somatosensory and auditory cortex localization by fMRI and MEG. Neuroreport 9: 1953–1957PubMedGoogle Scholar
  110. 110.
    Sumanaweera TS, Adler JR, Napel S, Glover GH (1994) Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery 35: 696–704PubMedGoogle Scholar
  111. 111.
    Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91: 804–813PubMedGoogle Scholar
  112. 112.
    Sutherland GR, Kaibara T, Wallace C, Tomanek B, Richter M (2002) Intraoperative assessment of aneurysm clipping using magnetic resonance angiography and diffusion-weighted imaging: technical case report. Neurosurgery 50: 893–898PubMedGoogle Scholar
  113. 113.
    Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, K unze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40: 891–902PubMedGoogle Scholar
  114. 114.
    Tzika AA, Cheng LL, Goumnerova L, Madsen JR, Zurakowski D, Astrakas LG, Zarifi MK, Scott RM, Anthony DC, Gonzalez RG, Black PM (2002) Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J Neurosurg 96: 1023–1031PubMedGoogle Scholar
  115. 115.
    Tzika AA, Zarifi MK, Goumnerova L, Astrakas LG, Zurakowski D, Young-Poussaint T, Anthony DC, Scott RM, Black PM (2002) Neuro-imaging in pediatric brain tumors: Gd-DTPA-enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging. AJNR Am J Neuroradiol 23: 322–333PubMedGoogle Scholar
  116. 116.
    Wirtz CR, Bonsanto MM, Knauth M, Tronnier VM, Albert FK, Staubert A, Kunze S (1997) Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 2: 172–179PubMedGoogle Scholar
  117. 117.
    Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, Tronnier VM (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46: 1112–1122PubMedGoogle Scholar
  118. 118.
    Wolf M, Vogel T, Weierich P, Niemann H, Nimsky C (2001) Automatic transfer of preoperative fMRI markers into intraoperative MR-images for updating functional neuronavigation. IEICE T Inf Syst E84-D: 1698–1704Google Scholar
  119. 119.
    Woydt M, Krone A, Becker G, Schmidt K, Roggendorf W, Roosen K (1996) Correlation of intra-operative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection. Acta Neurochir 138: 1391–1398PubMedGoogle Scholar
  120. 120.
    Xiong J, Gao J, Lancaster J, Fox P (1996) Assessment and optimization of functional MRI analyses. Human Brain Mapping 4: 153–167PubMedGoogle Scholar
  121. 121.
    Yousry TA, Schmid VD, Jassoy AG, Schmidt D, Eisner WE, Reulen HJ, Reiser MF, Lissner J (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195: 23–29PubMedGoogle Scholar
  122. 122.
    Zimmermann M, Seifert V, Trantakis C, Kuhnel K, Raabe A, Schneider JP, Dietrich J, Schmidt F (2000) Open MRI-guided microsurgery of intracranial tumours. Preliminary experience using a vertical open MRI-scanner. Acta Neurochir (Wien) 142: 177–186Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • C. Nimsky
    • 1
  • O. Ganslandt
    • 1
  • R. Fahlbusch
    • 1
  1. 1.Department of NeurosurgeryUniversity Erlangen-NürnbergErlangenGermany

Personalised recommendations