Cellulose and Other Polysaccharides Surface Properties and Their Characterisation

  • Karin Stana-KleinschekEmail author
  • Heike M. A. Ehmann
  • Stefan Spirk
  • Aleš Doliška
  • Hubert Fasl
  • Lidija Fras-Zemljič
  • Rupert Kargl
  • Tamilselvan Mohan
  • Doris Breitwieser
  • Volker Ribitsch


This chapter presents comprehensive information about surface phenomena of cellulose and polysaccharide surfaces. It comprises the necessary description of cellulose moieties, of measuring methods and recent results of polysaccharides surface modification and characterisation.

The first part describes different cellulose moieties starting with model cellulose surfaces, allowing basic studies of interface phenomena at well-defined surfaces and provides general information and deepens the understanding of interaction processes. It is extended to nanocrystalline cellulose and further to technological cellulose products.

The importance of structural information as the degree of crystallinity and amorphous regions and the voids size is briefly mentioned in the second part. The state-of-the-art measurement methods providing information about the chemical surface composition, the surface structure and roughness are discussed. The possibilities to measure thickness of cellulose layers using optical and other methods are presented. Particular attention is given to those methods providing information about polysaccharide surface at the solid/liquid interface, the surface energy, the quantification of surface charge, the interaction ability and the quantitative determination of adsorbed mass. A presentation of molecular modelling methods shows the ability of computational chemistry to describe such complex systems. Molecular mechanics force field, semiempirical and ab initio methods are described.

In the third part, recent results of surface modification, their characterisation and interaction abilities are presented. This comprises cellulose nanocrystals and nanocompounds, the stabilising effect of polysaccharides and the creation of functional groups on technical and biocompatible cellulose materials. Finally, results of molecular dynamics simulations of the polysaccharide–water interface are presented estimated by semiempirical and ab initio methods.


Contact Angle Cellulose Fibre Activate Partial Thromboplastin Time Pulp Fibre Cellulose Nanocrystals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Green Chem 8:784–786Google Scholar
  2. Abu-Lail NI, Camesano TA (2003) J Microsc 212:217–238PubMedGoogle Scholar
  3. Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008) Biomacromolecules 9:1273–1282PubMedGoogle Scholar
  4. Albrecht W, Reintjes M, Wulfhorst B (1997) Chem Fibres Int 47:289–304Google Scholar
  5. Amado S, Simoes MJ, Armada da Silva PAS, Luıs AL, Shirosaki Y, Lopes MA, Santos JD, Fregnan F, Gambarotta G, Raimondo S, Fornaro M, Veloso AP, Varejao ASP, Maurıcio AC, Geuna S, (2008) Biomaterials 29:4409–4419Google Scholar
  6. Andrade JR, Raphael E, Pawlicka A (2009) Electrochim Acta 54:6479–6483Google Scholar
  7. Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A 142(1):75–82Google Scholar
  8. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Langmuir 25(13):7675–7685PubMedGoogle Scholar
  9. Ausserre D, Valignat MP (2006) Nano Lett 6(7):1384–1388PubMedGoogle Scholar
  10. Avnir D, Klein LC, Levy D, Schubert U, Wojcik AB, Rappoport Z, Apeloig Y (2001) 2 Eds. In Chemistry of Organic Silicon Compounds; Zvi Rappoport and Yitzhak Apeloig, Eds.; Wiley: Chichester, UKGoogle Scholar
  11. Azizi S, Alloin F, Sanchez JY, Dufresne A (2004) Polymer 45: 4149–4157Google Scholar
  12. Barzyk D, Page DH, Ragauskas AJ (1997) Pulp Paper Sci 23: 520–528Google Scholar
  13. Baumann H, Faust V (2001) Carbohydr Res 331:43–57PubMedGoogle Scholar
  14. Baumann H, Scheen H, Huppertz B, Keller R (1998) Carbohydr Res 308:381–388PubMedGoogle Scholar
  15. Baumann H, Richter A, Klemm D, Faust V (2000) Macromol Chem Phys 201:1950–1962Google Scholar
  16. Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromolecules 6(2):1048–1054PubMedGoogle Scholar
  17. Belu AM, Graham DJ, Castner DG (2003) Biomaterials 24:3635–3653Google Scholar
  18. Berger W (1994) Chemiefasern/Textilindustrie 44/96:747–750Google Scholar
  19. Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O (2009) J Nanoparticle Res 11(7):1521–1554Google Scholar
  20. Berkert U, Allinger NL (1982) American Chemical Society Monograph, vol 177. Washington, DCGoogle Scholar
  21. Bhattacharya R, Mukherjee P (2008) Adv Drug Deliv Rev 60:1289–1306Google Scholar
  22. Biederman K, Sillen LG (1952) Arkiv Kemi 5:425–440Google Scholar
  23. Biermann CJ (1996) Handbook of Pulping and Papermaking. Academic Press, San DiegoGoogle Scholar
  24. Breitwieser D, Spirk S, Fasl H, Stana-Kleinschek K, Ribitsch V (2012) 243rd American Chemical Society National Meetings and Exposition “Chemistry of Life”, San Diego, California, USAGoogle Scholar
  25. Brüger H (1994) Chemiefasern/Textilindustrie 44/96:701Google Scholar
  26. Čakara D, Fras Zemljič L, Bračič M, Stana-Kleinschek K (2009) Carbohydr Polym 78(1):36–40Google Scholar
  27. Capadona JR, van den Berg O, Capadona LA, Schroeter M, Rohan SJ, Tyler DJ, Weder C (2007) Nat Nanotechnol 2:765–769Google Scholar
  28. Chan CM (1994) Polymer surface modification and characterization. Carl Hanser Verlag, Münich, GermanyGoogle Scholar
  29. Chem JH, Liu QL, Zhan XH, Zhang QG (2007) J Membr Sci 282:125–130Google Scholar
  30. Chen X, Schluesener HJ (2008) Toxicol Lett 176:1–12PubMedGoogle Scholar
  31. Chensong P, Songyun X, Houjiang Z, Yu F, Mingliang Y, Hanfa Z (2007) Anal Bioanal Chem 387:193–204Google Scholar
  32. Choi Y, Simonsen J (2006) J Nanosci Nanotechnol 6:633–639PubMedGoogle Scholar
  33. Ciavatta L (1963) Arkiv Kemi 20:417Google Scholar
  34. Clark T (1985) A handbook of computational chemistry. John Wiley and Sons, New YorkGoogle Scholar
  35. Cole DJ (1996) Lenzinger Berichte 75:45–48Google Scholar
  36. Cook G (1984) Handbook of textile fibres, man-made fibres, 5th edn. Merrow, Durham, pp 47–64Google Scholar
  37. Corriu RJP, Boury B, Rappoport Z, Apeloig Y (2001) In: Chemistry of organic silicon compounds; Zvi Rappoport and Yitzhak Apeloig, Eds.; Wiley: Chichester, UKGoogle Scholar
  38. Coseri S, Nistor G, Fras Zemljič L, Strnad S, Harabagiu V, Simionescu CB (2009) Biomacromolecules 10(8):2294–2299PubMedGoogle Scholar
  39. Cranston ED, Gray DG (2008) Colloids Surf A – Physiochem Eng Asp 325:44–51Google Scholar
  40. Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New YorkGoogle Scholar
  41. Doliška A, Willför S, Strnad S, Ribitsch V, Stana Kleinschek K, Eklund P, Xu C (2011) Holzforschung 66(2):149–154Google Scholar
  42. Doliška A, Strnad S, Stana J, Martinelli E, Ribitsch V, Stana Kleinschek K (2012) J Biomater Sci Polym Ed 23:697–714Google Scholar
  43. Donati I, Travan A, Pelillo C, Scarpa T, Coslovi A, Bonifacio A, Sergo V, Paoletti S (2009) Paoletti Biomacromolecules 10:210–213Google Scholar
  44. Dumitriu S (2002) Polymeric Biomater, 2nd ed., Revised and Expanded Marcel Dekker, Inc. New York, pp 1–213Google Scholar
  45. Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Tetrehdron Lett 49:7322–7324Google Scholar
  46. Edgar CD, Gray DG, (2003) Cellulose 10:299–306Google Scholar
  47. Einfeldt L, Petzold K, Günther W, Stein A, Kussler M, Klemm D (2001) Macromol Biosci 1(8):341–347Google Scholar
  48. El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Carbohydr Polym 80:779–782Google Scholar
  49. Eriksson M, Notley SM, Wågberg L (2007) Biomacromolecules 8:912–920Google Scholar
  50. Evanoff DD, Chumanov G (2005) Chem Phys Chem 6:1221–1231Google Scholar
  51. Faibrother F, Mastin HJ (1924) Chem Soc 75:2318–2331Google Scholar
  52. Fairbrother F, Mastin HJ (1924) Chem Soc 75:2318–2331Google Scholar
  53. Fasl H, Stana J, Stropnik D, Strnad S, Stana-Kleinschek K, Ribitsch V (2010) Biomacromolecules 11:377–381PubMedGoogle Scholar
  54. Favier V, Chanzy H, Cavaille JY (1995) Macromolecules 28(18):6365–6367Google Scholar
  55. Ferraria M, Boufi S, Battaglini N, Botelho dR, ReiVilar M (2010) Langmuir 26:1996Google Scholar
  56. Filpponen I, (2009) Ph.D. Thesis, North Carolina State University, Raleigh, NCGoogle Scholar
  57. Fink HP, Fanter D, Philipp B (1985) Acta Polym 36:1–8Google Scholar
  58. Fowkes FM (1962) J Phys Chem 66:382–382Google Scholar
  59. Fowkes FM (1964) Ind Eng Chem 56:40–52Google Scholar
  60. Fras Zemljič L, Laine J, Stenius P, Stana-Kleinschek K, Ribitsch V, Doleček V (2004) J Appl Polym Sci Ed 92(5):3186–3195Google Scholar
  61. Fras Zemljič L, Stana-Kleinschek K, Ribitsch V, Sfiligoj-Smole M, Kreže T (2002) Lenzing Ber 81:80–88Google Scholar
  62. Fras Zemljič L, Johansson L, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Colloids Surf A Physicochem Eng Asp [Print ed.] 260(1/3):101–108Google Scholar
  63. Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K (2006a) Cellulose (Lond.) 13(6):655–663Google Scholar
  64. Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2006b) Lenzing Ber 85:68–76Google Scholar
  65. Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K (2008a) Cellulose (Lond.) 15(2):315–321Google Scholar
  66. Fras Zemljič L, Peršin Z, Stenius P, Stana-Kleinschek K (2008b) Cellulose (Lond.) 15(5):681–690Google Scholar
  67. Fras Zemljič L, Čakara D, Michaelis N, Heinze T, Stana-Kleinschek K (2011) Cellulose (Lond.) 18:33–43Google Scholar
  68. Gericke M, Liebert T, Heinze T (2009) Macromol Biosci 9:343–353PubMedGoogle Scholar
  69. Gericke M, Doliška A, Stana J, Liebert T, Heinze T, Stana-Kleinschek K (2010) Macromol Biosci 11:549–556Google Scholar
  70. Gómez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley-VCH: Weinheim, GermanyGoogle Scholar
  71. Gran G (1950) Acta Chem Scand A4:97Google Scholar
  72. Gray DG, Weller M, Ulkem N, Lejeune A (2010) Cellulose 17:117–124Google Scholar
  73. Groth T, Wagenknecht W (2001) Biomaterials 22:2719–2729PubMedGoogle Scholar
  74. Gruber M (1998) Ph.D. Dissertation. University of Stuttgart (Germany)Google Scholar
  75. Grunert M, Winter WT (2002) J Polym Environ 10(1):27–30Google Scholar
  76. Grunnert M, Winter WT (2000) Polym Mater Sci Eng 82:232Google Scholar
  77. Habibi Y, Foulon L, Aguie-Beghin V, Molinari M, Douillard RJ (2007) Colloids Interface Sci 316:388–397Google Scholar
  78. Habibi Y, Lucia LA, Rojas (2010) OJ Chem Rev 110:3479–3500Google Scholar
  79. Hanley SJ, Giasson J, Revol JF, Gray DG (1992) Polymer 33(21):4639–4642Google Scholar
  80. Hardy BJ, Sarko A (1993) J Comput Chem 14(7):848–857Google Scholar
  81. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. John Wiley and Sons, New YorkGoogle Scholar
  82. Heinze T, Daus S, Gericke M, Liebert T (2010) Semi-synthetic sulfated polysaccharides – promising materials for biomedical applications and supramolecular architecture l in “Polysaccharides: development, properties and applications” Nova Science Publishers, Inc., New York, USAGoogle Scholar
  83. Hermans PH, Weidinger A (1949) J Polym Sci 4:135–144Google Scholar
  84. Herrington TM, Petzold JC (1992) Colloids Surf 64:109–118Google Scholar
  85. Holmberg M, Berg J, Stemme S, Ödberg L, Rasmusson J Claesson PJ (1997) Colloids Interface Sci 186:369–381Google Scholar
  86. Horvath AT, Horvath AE, Lindström T, Wågberg L (2008) Langmuir 24:10797–10806Google Scholar
  87. Hunter RJ (1981) Zeta potential in colloid science, principles and applications. Academic Press, London, pp 6–9Google Scholar
  88. Hyperchem 7 release (2002) Hypercube Inc.Google Scholar
  89. Ibrahim MM, El-Zawawy WK, Nassar MA (2010) Carbohydr Polym 79(3):694–699Google Scholar
  90. Indest T, Laine J, Ribitsch V, Johansson LS, Stana-Kleinschek K, Strnad S (2008) Biomacromolecules 9:2207–2214Google Scholar
  91. Indest T, Laine J, Johansson LS, Stana-Kleinschek K, Strnad S, Dworczak R, Ribitsch V (2009) Biomacromolecules 10:630–637Google Scholar
  92. Jacobasch HJ, Bauböck GSchurz J (1985) Problems and results of zeta-potential measurements on fibers. Colloids Polym Sci 263(1):3–24Google Scholar
  93. Jianshe C (2007) Surface texture of foods: perception and characterization. Critical Reviews in Food Science and Nutrition 47:583–598Google Scholar
  94. Jun S-H, Lee E-J, Yook S-W, Kim H-E, Kim H-W, Koh Y-H (2010) Acta Biomater 6:302–307PubMedGoogle Scholar
  95. Kaelble DH (1972) Physical chemistry of adhesion. Wiley Interscience, New York, USAGoogle Scholar
  96. Kälble DH (1969) Adhes J 1:102–123Google Scholar
  97. Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek, Ribitsch V (2012) Adv Funct Mater DOI:10.1002/adfm.201200607Google Scholar
  98. Katz S, Beatson RP (1984) Scallion AM Svensk. Papperstidning 87:48Google Scholar
  99. Kickelbick G (2006) Hybrid materials. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  100. Kim CW, Kim DS, Kang SY, Marqueze M, Joo YL (2006) Polymer 47:5097–5107Google Scholar
  101. Klemencic D, Simoncic B, Tomsic B, Orel B (2010) Carbohydr Polym 80(2):426–435Google Scholar
  102. Klemm D, Philipp B, Heinze T, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1, fundamentals and analytical methods. Wiley-VCH Verlag, WeinheimGoogle Scholar
  103. Klemm D, Heublein B, Fink H, Bohn A (2005) Angew Chem Int Ed 44:3358–3393Google Scholar
  104. Kocher T, Langenbeck N, Rosin M, Bernhardt O (2002) Methodology of three-dimensional determination of root surface roughness. J Periodont R 37:125–131Google Scholar
  105. Kontturi E, Österberg M, Tammelin T (2006) Chem Soc Rev 35:1287–1304PubMedGoogle Scholar
  106. Kontturi E, Thüne PC, Niemantsverdriet JW (2003) Langmuir 19:5735–5741Google Scholar
  107. Krässig HA (1993) Cellulose, structure, accessibility and reactivity. Gordon and Breach Science Publishers, Y-Parc, SwitzerlandGoogle Scholar
  108. Krässig HA (1996) Cellulose – structure, accessibility and reactivity. Gordon and Breach Science Publishers, AmsterdamGoogle Scholar
  109. Kreže T (2005) Mater Res Innov 9(1):108–129Google Scholar
  110. Kreze T, Malej S, Veder K (2003) Tex Res J 73(8):675–684Google Scholar
  111. Kreze T, Strnad S, Stana-Kleinschek K, Ribitsch V (2001) Mat Res Innovat 4:107–114Google Scholar
  112. Kreze T, Jeler S, Strnad S (2002) Mat Res Innovat 5:277–283Google Scholar
  113. Krüger R (1994) Lenzinger Ber 74:49–52Google Scholar
  114. Kwok DY, Neumann AW (1999) Adv Colloid Interface Sci 81:167–249Google Scholar
  115. Laine J (1994) Surface properties of unbleached kraft pulp fibers, determined by different methods, Dissertation. Department of Forest Products Technology; Helsinki University of Technology, Espoo, FinlandGoogle Scholar
  116. Laine J, Lindström T (2001) Das Papier 1:40–45Google Scholar
  117. Laine J, Stenius P (1997) Paperi Puu - Paper and Timber 79:257–266Google Scholar
  118. Laine J, Löfgren L, Stenius P, Sjöberg S (1994) Colloid Surf A 88:277–287Google Scholar
  119. Laine J, Buchert J, Viikari L, Stenius P (1996) Holzforschung 50:208–214Google Scholar
  120. Laine J, Lindström T, Glad-Nordnark G, Risinger G (2000) Nordic Pulp Paper Res J 17(1):50–56Google Scholar
  121. Liebert T (2010); Cellulose Solvents - Remarkable History, Bright Future; ACS: Washington DC, USAGoogle Scholar
  122. Liesene J (2009) Cellulose 17:167–172Google Scholar
  123. Lindgren J, Wiklund L, Öhman LO (2000) Nordic Pulp and Paper Res. J 15:18Google Scholar
  124. Lipkowitz KB, Boyd DB (1990) Eds., Reviews in computational chemistry. VCH Publishers, New YorkGoogle Scholar
  125. Liu Y-L, Su Y-H, Lai J-Y (2004) Polymer 45:6831–6837Google Scholar
  126. Liu J, Wang Q, Wang A (2007) Carbohydr Polym 70:166–173Google Scholar
  127. Lu P, Hsieh YL(2010) Carbohydr Polym 82:329–336Google Scholar
  128. MacArtain P, Jacquier JC, Dawson KA (2003) Carbohydr Polym 53:395–400Google Scholar
  129. Martinichen-Herrero JC, Carbonero ER, Sassaki GL, Gorin PAJ, Iacomini M (2005) Int J Biol Macromol 35:97–102Google Scholar
  130. Marx KA (2003) Biomacromolecules 4(5):1102–1120Google Scholar
  131. Mathew AP, Chakraborty A, Oksman K, Sain M (2006) In Cellulose Nanocomposites: Processing, Characterization, and Properties; Oksman, K., Sain, M., Eds.; ACS Symposium Series 938; American Chemical Society: Washington, DCGoogle Scholar
  132. Mesquita JP, Donnici LC, Pereira FV (2010) Biomacromolecules 11:473–480Google Scholar
  133. Mohan T, Kargl R, Doliška A, Vesel A, Ribitsch V, Stana-Kleinschek K (2011) J Colloid Interf Sci 358(2):604–610Google Scholar
  134. Mohan T, Spirk S, Kargl R, Doliška A, Vesel A, Salzmann I, Resel R, Ribitsch V, Stana-Kleinschek K (2012a) Soft Matter 8:9807–9815Google Scholar
  135. Mohan T, Spirk S, Kargl R, Doliška A, Ehmann HMA, Köstler S, Ribitsch V, Stana-Kleinschek K (2012b) Colloids and Surfaces A:Physicochem Eng Aspects 400:67–72Google Scholar
  136. Morin A, Dufresne A (2002) Macromolecules 35:2190–2199Google Scholar
  137. Murray RW (2008) Chem. Rev. 108:2688–2720Google Scholar
  138. Muzzarelli RAA, Tanfani F, Emanuelli M (1984) Carbohydr Res 126:225–231PubMedGoogle Scholar
  139. Myers D (1999) Surfaces, interfaces and colloids, John Wiley and Sons, New YorkGoogle Scholar
  140. Noorani S, Simonsen J, Atre S (2006) In Cellulose Nanocomposites: Processing, Characterization and Properties; Oksman K, Sain M, Eds.; ACS Symposium Series 938; American Chemical Society:Washington, D.C.Google Scholar
  141. Notley SM, Wågberg L (2005) Biomacromolecules 6:1586–1591Google Scholar
  142. Notley SM, Eriksson M, Wågberg L, Beck S, Gray DG, (2006) Langmuir 22:3154–3160Google Scholar
  143. Owens DK, (1969) J Appl Polym Sci. 13:1741–1747Google Scholar
  144. Park S, Venditi RA, Jameel H, Pawlak JJ Park S et al (2006) Carbohydr Polym 66:97–103Google Scholar
  145. Park W-I, Kang M, Kim H-S, Jin H-J (2007) Macromol Symp 249–250:289–294Google Scholar
  146. Pecse A, Jordane AA, Carluci G, Cintio A (2005) Articles comprising cationic polysaccharides and acidic pH buffering means. US Patent Application Publication: 0124799 A1Google Scholar
  147. Penfold J, Tucker I, Petkov J, Thomas RK (2007) Langmuir 23:8357–8364Google Scholar
  148. Peršin Z Stana-Kleinschek K, Sfiligoj-Smole M, Tatjana K (2004) Tex Res J 74(1):55–62Google Scholar
  149. Pires L, Gorin PAJ, Reicher F, Sierakowski MR (2001) Carbohydr Polym 46:165–169Google Scholar
  150. Rabel W (1977) Physkalische Blätter 33:151–161Google Scholar
  151. Rangelova N, Chernev G, Nenkova S, Samuneva B, Georgieva N, Yotova L, Radev L, Salvado IMM (2008) Nanoscience & Nanotechnology 8:246–249Google Scholar
  152. Räsänen E, Kärkkäinen L, Tervola P, Gullichsen J, Stenius P, Vuorinen T (2001a) Grenoble Workshop on Advanced Methods for Lignocellulosics and Paper Products Characterization, P June 18–19. Grenoble, FranceGoogle Scholar
  153. Räsänen E, Stenius P, Tervola P (2001b) Nordic Pulp and Paper Res. J 16:130–139Google Scholar
  154. Reimhulta K, Yoshimatsub K, Risvedenb K, Chena S, Yeb L, Krozer A (2003) Biomacromolecules 4(5):1103Google Scholar
  155. Reischl M, Stana-Kleinschek K, Ribitsch V (2006) Mater Sci Forum 514–516:1374–1378Google Scholar
  156. Ribitsch V, Stana-Kleinschek K, Tatjana K, Strnad S (2001) Macromol Mater Eng 286(10):648Google Scholar
  157. Roman M (2009) Model cellulosic surface. ACS, Washington, DC, pp 115–136Google Scholar
  158. Rossetti FF, Panagiotou P, Rehfeldt F, Schneck E, Dommach M, Funari SS, Timmann A, Müller-Buschbaum P, Tanaka M (2008) Biointerphases 3:117–127PubMedGoogle Scholar
  159. Ruland W (1961) Acta Crystallogr 14:1180–1195Google Scholar
  160. Saarinen T, Österberg M, Laine J (2008) Colloids Surf A – Physiochem Eng Asp 330: 134–142Google Scholar
  161. Samuneva B, Djambaski P, Kashchieva E, Chernev G, Kabaivanova L, Emanuilova E, Salvado IMM, Fernandes MHV, Wu AJ (2008) Non-Cryst. Solids 354:733–740Google Scholar
  162. Sax AF (2008) Monatsh Chem 139:299–308Google Scholar
  163. Sauerbrey G (1959) Z Phys 155:206–222Google Scholar
  164. Scallan AM, Katz S (1989) Cellulose and wood chemistry and technology. John Wiley, New York, NYGoogle Scholar
  165. Schaub M, Wenz G, Wegner G, Stein A, Klemm D (1993) Adv Mater 5:919–921Google Scholar
  166. Schenzel K, Fischer S, Brendler E (2005) Cellulose 12:223–231Google Scholar
  167. Schrand M, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM (2008) Nanotechnology 19(23):1–13Google Scholar
  168. Schuldt U, Philipp B, Klemm D, Stein A, Jancke H, Nehls I (1994) Papier 48:3–17Google Scholar
  169. Schurz J (1994) Lenzinger Berichte 74:37–40Google Scholar
  170. Sczech R, Riegler HJ (2006) J Colloid Interface Sci 301:376–385Google Scholar
  171. Sfiligoj-Smole M et al (2003) Mater Res Innov 7(5):275–282Google Scholar
  172. Shchipunov YA, Karpenko TY (2004) Langmuir 20:3882–3887PubMedGoogle Scholar
  173. Shchipunov YA, Karpenko TY, Krekoten AV (2005) Compos Interf 11:587–607Google Scholar
  174. Shchipunov YA, Kojima A (2005) Imaeb T. J Colloid Interf Sci 285:574–580Google Scholar
  175. Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Costa MA, Fernandes MH (2009) Acta Biomat 5:346–355Google Scholar
  176. Sjöström E, Enström B (1966) Svensk Papperstidning 69:55Google Scholar
  177. Smitha S, Shajesh P, Mukundan P (2008) Warrier KGK. J Mater Res 23:2053–2060Google Scholar
  178. Smulochowski M (1903) Bull Intern Acad Sci Cracovie 184Google Scholar
  179. Souplet V, Desmet R, Melnyk O (2007) J Peptides Sci 13–7:451–457Google Scholar
  180. Spirk S, Ehmann HMA, Ribitsch V, Stana-Kleinschek K, (2011) In proceedings of the 15th International electronic conference on synthetic organic chemistry, Sciforum electronic conference seriesGoogle Scholar
  181. Spirk S, Findenig G, Doliška A, Reischel VE, Swanson NL, Kargl R, Ribitsch V, Stana-Kleinschek K (2012) Carbohydr Polym, DOI:10.1016/j.carbpol.2012.04.030Google Scholar
  182. Spirk S, Ehmann HMA, Kargl R, Hurkes N, Reischl M, Novak J, Resel R, Ming W, Pietschnig R, Ribitsch V (2010) ACS Appl Mater Interfaces 2(10):1412–1424Google Scholar
  183. Stana-Kleinschek K (2002) Mater Res Innov 6(1):13–18Google Scholar
  184. Stana-Kleinschek K et al. (1999) Polym. Eng. Sci. 39(8):1412–1424Google Scholar
  185. Stana-Kleinschek K, Ribitsch V (1998) Colloids surf., A Physicochem. eng. asp. [Print ed.] 140:127–138Google Scholar
  186. Stana-Kleinschek K, Ribitsch V, Tatjana K, Sfiligoj-Smole M, Peršin Z (2003) Lenzing Ber 82:83–95Google Scholar
  187. Sterling TB (2007) Laboratory Hemostasis – A Practical Guide for Pathologists. Springer ScienceGoogle Scholar
  188. Stewart JJP (1990) MOPAC: A Semiempirical Molecular Orbital Program. J Computer-Aided Molecular Design 4:1–105Google Scholar
  189. Strnad S, Šauperl O, Jazbec A, Stana-Kleinschek K (2008) Tex. Res. J. 78(5):390–398Google Scholar
  190. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Chem. Rev. 110:389–458Google Scholar
  191. Tammelin T, Saarinen T, Österberg M, Laine J (2006) Cellulose 13:519–535Google Scholar
  192. Tanaka M, Wong AP, Rehfeldt F, Tutus M, Kaufmann SJ (2004) Am. Chem. Soc. 126:3257–3260Google Scholar
  193. Twu Y-K, Chen Y-W, Shih C-M (2008) Powder Technology 185. Issue 3:251–257Google Scholar
  194. Usuda M, Suzuki O, Nakano J, Migita N (1967) Kogyo Kagaku Zasshi 70:349–352Google Scholar
  195. Valles C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Penicaud (2008) J Am Chem Soc 130–47:5802–5811Google Scholar
  196. van Oss CJ (1993) Colloids Surf A Phys Chem Eng Asp. 78:1–49Google Scholar
  197. van Oss CJ, Chaudhury MK, Good RJ (1986) J Colloid. Interface Sci 111:378–390Google Scholar
  198. van Oss CJ, Chaudhury MK, Good RJ (1988) Langmuir 4:884–891Google Scholar
  199. Van Riessen A, Winton GH, Ohyi H, Yoshida M (1994) Micron. 25, 6:511–517Google Scholar
  200. Vongchan P, Sajomsang W, Subyen D, Kongtawelert P (2002) Carbohydr Res 337:1239–1242PubMedGoogle Scholar
  201. Wågberg L, Ödberg L, Glad-Nordmark G (1989) Nord Pulp Pap Res J 4(2):71–76Google Scholar
  202. Waltz JE, Taylor GB (1947) Ana.l Chem. 19:448–450Google Scholar
  203. Washburn EW (1921) Phys.Rev. 17(3):273–283Google Scholar
  204. Wegner G, Buchholz V, Ödberg L, Stemme S (1996) Adv Mater 8:399–402Google Scholar
  205. Wolf S, Mobüs BZ (1962) Anal Chemie 86:194Google Scholar
  206. Wolfrom ML, Shen Han TM (1959) J Am Chem Soc 81:1764–1766Google Scholar
  207. Young DC (2001) Computational chemistry: A practical guide for applying techniques to real-world problems. John Wiley and Sons, New York, USAGoogle Scholar
  208. Zaera F (2012) Chem Rev 112:2920–2986Google Scholar
  209. Zhang Y, Sjögren B, Engstrand P, Htun MJ (1994) Wood Chem Techn. 14:83–102Google Scholar
  210. Zhou Q, Baumann MJ, Brumer H, Teeri T (2006) Carbohydr Polym 63:449–458Google Scholar
  211. Zisman WA (1964) In: Fowkes FM (ed). Contact angle, wettability and adhesion. Washington, DC, USA: American Chemical Society pp 1–51Google Scholar
  212. Zuwei M, Zhengwei M, Changyou G (2007) Colloids Surf., B 60:137–157Google Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Karin Stana-Kleinschek
    • 1
    Email author
  • Heike M. A. Ehmann
    • 2
    • 3
  • Stefan Spirk
    • 2
    • 3
  • Aleš Doliška
    • 2
  • Hubert Fasl
    • 3
  • Lidija Fras-Zemljič
    • 2
  • Rupert Kargl
    • 3
  • Tamilselvan Mohan
    • 2
  • Doris Breitwieser
    • 3
  • Volker Ribitsch
    • 3
  1. 1.Laboratory of Characterization and Processing PolymersUniversity of MariborMariborSlovenia
  2. 2.Laboratory of Characterization and Processing PolymersUniversity of MariborMariborSlovenia
  3. 3.Department for Rheology and Colloidal ChemistryUniversity of Graz, Institute of ChemistryGrazAustria

Personalised recommendations