Cellulose Products from Solutions: Film, Fibres and Aerogels

  • Frank Wendler
  • Thomas Schulze
  • Danuta Ciechanska
  • Ewa Wesolowska
  • Dariusz Wawro
  • Frank MeisterEmail author
  • Tatiana Budtova
  • Falk Liebner


It belongs to one of the oldest experiences of mankind to use fibrous materials of plant or animal origin with different fibre lengths and fineness as basic materials of human clothes. Cellulose forms linear macromolecules, preferentially useful for an application as textile fibres. Common used pulp fibres are too short for those applications and have to be transformed into staple fibres like wool or endless fibres like silk by means of solution shaping procedures. Dissolution of cellulose in common protic solvents like water or alcohol is hindered due to intra- and intermolecular hydrogen bonds. For that reason cellulose derivatives like cellulose nitrate, cellulose xanthogenate or cellulose acetate were used first in order to manufacture cellulose man-made fibres. Situation changes after investigation of direct dissolving liquids like cyclic amine oxides, especially N-methylmorpholine-N-oxide, and large-scale manufacturing of it became reality. In the late 1970s up to the late 1990s, direct dissolution technology, nowadays well known as Lyocell process, was developed up to technical scales. Dry-wet shaping has recently developed to a powerful tool for manufacturing of fibres, films, nonwoven or other shapes based on cellulose. The Lyocell process also offers new opportunities for chemical or physical functionalisation of cellulose shapes. Because of technological difficulties caused by the thermal and chemical sensitivity of the NMMO monohydrate and the strong fibrillation behaviour of dry-wet shaped fibres, alternatives are to be found to overcome these problems. CELSOL® and BIOCELSOL® processes are two approaches which investigated for substitution of Lyocell process. Native pulp fibres have to be pretreated before they could be used for direct dissolution in aqueous NaOH, the common solvent of CELSOL and BIOCELSOL processes. Development on direct dissolution in caustic soda is still under investigation and scaled up into semi-technical and technical scales.

Besides fibres and films, the manufacture of highly porous materials is a very active field, offering the possibility to use them in a wide range of applications, from biomedical and cosmetics to insulation and electrochemistry.

A review of the different processes able to manufacture fibres, films and porous objects is given here.


Bacterial Cellulose Carbon Aerogel Propyl Gallate Cellulose Solution Viscose Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRefGoogle Scholar
  2. Anonymous (1997) 100th anniversary of the Pauly Patent. Chem Fiber Intern 47:431Google Scholar
  3. Audemars G (1855) British Patent 283Google Scholar
  4. Bandel W (1961) Svensk Papperstidn 64:893–897Google Scholar
  5. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Bodin A, Bäckdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97(2):425–434CrossRefGoogle Scholar
  6. Bodin A, Bäckdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97(2):425–434PubMedCrossRefGoogle Scholar
  7. Bredereck K, Hermanutz F (2005) Rev Prog Color 35:59–75CrossRefGoogle Scholar
  8. Büttner R, Claussen F, Knobelsdorf C, Krieg M, Taeger E (1999) DE 19917614 A1. Production of highly adsorbent cellulose fibre for use in filters to remove ions or polar substances, 19/04/1999Google Scholar
  9. Chardonnet AM (1884) French Patent 165 349Google Scholar
  10. Chen X, Burger C, Fang D, Ruan D, Zhang L, Hsiao BS, Chu B (2006) Polymer 47:2839–2848CrossRefGoogle Scholar
  11. Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12PubMedCrossRefGoogle Scholar
  12. Ciechańska D, Galas E, Struszczyk H (1996) Biotransformation of cellulose. Fibres Text East Eur 4(3–4):148Google Scholar
  13. Ciechańska D, Wawro D, Stęplewski W, Kazimierczak J, Struszczyk H (2005) Formation of fibres from bio-modified cellulose pulp. Fibres Text East Eur 13(6(54)):19–23Google Scholar
  14. Ciechanska D, Wawro D, Stęplewski W, Wesolowska E (2006) Ecological method of manufacture of the multifilament cellulose fibres for knitted and woven products. In: Proceedings of the 7th International Symposium “Alternative cellulose – manufacturing, forming, properties”, Sept 6–7, 2006, Rudolstadt, GermanyGoogle Scholar
  15. Ciechańska D, Wawro D, Stęplewski W, Wesolowska E, Vehvilonen M, Nousiainen P, Kamppuri T, Hroch Z, Sandak, Janicki J, Włochowicz A, Rom M, Kovalainen A (2007) Ecological method of manufacture of the cellulose fibres for advanced technical products. In: Edana conference, Nonwovens Research Academy, 29–30 March 2007, University of Leeds, UKGoogle Scholar
  16. Cross CF, Bevan EJ, Beadle C (1892) British Patent 8700Google Scholar
  17. Deng M, Zhou Q, Du A, Kasteren JMN, Wang W (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Mater Lett 63(21):1851–1854CrossRefGoogle Scholar
  18. Depaissis LH (1890) French Patent 203 741Google Scholar
  19. Diener A (2010) How to maximize cellulose fiber capacity? In: Proceedings of the 9th International Symposium “Alternative cellulose – manufacturing, forming, properties”, Sept 09–10, 2010, Erfurt, GermanyGoogle Scholar
  20. Diniz JMBF, Gil MH, Castro JAAM (2004) Hornification - its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494CrossRefGoogle Scholar
  21. Dohrn W, Büttner R, Knobelsdorf C, Notz I, Schuemann M, Herrmann E, Werner G (2001) DE 10137171 A1, “Verfahren zur Herstellung von cellulosischen Formkörpern mit superabsorbierenden Eigenschaften”, 31/07/2001Google Scholar
  22. Duchemin BCJ, Staiger MP, Ticker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221CrossRefGoogle Scholar
  23. Ekman K, Eklund V, Fors J, Huttunen JI, Selin JF, Turunen OT (1986) Cellulose carbamate. In: Young RA, Rowell RM (eds) Cellulose structure, modification and hydrolysis. Wiley, New York, pp 131–148Google Scholar
  24. European project (undated): BIOCELSOL – biotechnological process for manufacturing cellulosic products with added value. Contract number: NMP2–CT–2003-505567Google Scholar
  25. Fink H-P, Weigel P, Bohn A (1997) Lenz Ber 76:119–125Google Scholar
  26. Fink H-P, Weigel P, Purz H-J (1998) Formation of lyocell-type fibres with skin-core structure. Lenz Ber 78:41–44Google Scholar
  27. Fink H-P, Weigel P, Purz H-J, Ganster J (2001) Structure formation from regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  28. Fink H-P, Weigel P, Rihm R (2004) DE 10 2004 007 616 B4 “Verfahren zur Herstellung von Fasern und anderen Formkörpern aus Cellulosecarbamat und/oder regenerierter Cellulose”, 17/02/2004Google Scholar
  29. Fink H-P, Ebeling H, Rihm R (2006) Fibre formation from liquid crystalline solutions of cellulose carbamate in N-methylmorholine-N-oxide. In: Proceedings of the 7th international symposium “Alternative cellulose – manufacturing, forming, properties”, Sept 6–7, 2006, Rudolstadt, GermanyGoogle Scholar
  30. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645CrossRefGoogle Scholar
  31. Franks NA, Varga JK (1977) US 4145532Google Scholar
  32. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277PubMedCrossRefGoogle Scholar
  33. Geyer U, Heinze T, Stein A, Klemm D, Marsch S, Schumann D, Schmauder HP (1994) Formation, derivatization and applications of bacterial cellulose. Int J Biol Macromol 16(6):343–347PubMedCrossRefGoogle Scholar
  34. Graenacher C, Sallman R (1939) US Patent 2179181Google Scholar
  35. Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T (2008) New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and subsequent use as substrate for proton exchange membrane fuel cell electrocatalyst particles. J Power Sources 185:717–726CrossRefGoogle Scholar
  36. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A(2):431–438CrossRefGoogle Scholar
  37. Hill JW, Jacobson RA (1938) US Patent 2134825Google Scholar
  38. Huajin J, Chunxi Z, Lixia G (2007) Carbohydr Polym 342(6):851–858Google Scholar
  39. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRefGoogle Scholar
  40. Jin H, Nishiyama T, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Coll Surf A Physicochem Eng Aspects 240:63–67CrossRefGoogle Scholar
  41. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1–3):101–106CrossRefGoogle Scholar
  42. Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Polym J 16:857–866CrossRefGoogle Scholar
  43. Kennedy F, Phillips GO, Williams PA (1990) Cellulose sources and exploitation: industrial utilization, biotechnology and physico-chemical properties. Ellis Horwood, New YorkGoogle Scholar
  44. Kennedy F, Phillips GO, Williams PA (1992) Lignocellulosics: science, technology, development and use. Ellis Horwood, New YorkGoogle Scholar
  45. Kennedy F, Phillips GO, Williams PA (1995) Cellulose and cellulose derivatives: physico-chemical aspects and industrial applications. Woodhead Publishing, CambridgeGoogle Scholar
  46. Keunecke G, Struszczyk H, Starostka P, Mikolajscyk W, Urbanowski A (1999) US 5,906,926 A “Method for modified manufacture of cellulose carbamate”, 25/05/1999Google Scholar
  47. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley, WeinheimCrossRefGoogle Scholar
  48. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Angew Chem Int Ed 117:3422–3458CrossRefGoogle Scholar
  49. Koppe P, Müller M (1905) German Patent 187 947Google Scholar
  50. Kosan B, Michels C, Meister F (2008a) Cellulose 15:59–66CrossRefGoogle Scholar
  51. Kosan B, Nechwatal A, Meister F (2008b) Chem Fiber Intern 4:234–236Google Scholar
  52. Kralisch D, Hessler N, Klemm D (2008) Kontinuierliches Verfahren zur Darstellung von bakteriell synthetisierter Cellulose in flächiger Form, DE 10 2008 046 644.1Google Scholar
  53. Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105(4):740–747PubMedGoogle Scholar
  54. Krässig H (1982) Textilveredlung 17:333–343Google Scholar
  55. Krieg M, Mooz M, Rauch C, Meister F (2009) Optimization of a new cellulosic fiber with a depot-function for insecticide substances. In: Proceedings of the Xth international jena symposium on tick-born diseases, Mar 19–21, Weimar, GermanyGoogle Scholar
  56. Liebert T (2008) Macromol Symp 262:28–38CrossRefGoogle Scholar
  57. Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135CrossRefGoogle Scholar
  58. Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze M-A, Wendland M, Rosenau T (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63:3–11CrossRefGoogle Scholar
  59. Liebner F, Haimer E, Wendland M, Neouze M-A, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10(4):349–352PubMedCrossRefGoogle Scholar
  60. Loth F, Schaaf E, Weigel P, Fink -P, Gensrich HJ (2002) WO 03/099 871Google Scholar
  61. Maeda H (2006) Preparation and properties of bacterial cellulose aerogel and its application. Cell Commun 13(4):169–172Google Scholar
  62. Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Preparation and properties of bacterial cellulose aerogel. Jpn J Polym Sci Technol 63:135–137Google Scholar
  63. McCorsley CC (1979b) US 4144080Google Scholar
  64. McCorsley III CC, Varga JK (1979a) US 4142913 A “Process for making a precursor of a solution of cellulose”, 06/03/1979Google Scholar
  65. Meister F, Vorbach D, Michels C, Maron R, Berghof K, Taeger E (1998) Chem Fiber Intern 48:32–35Google Scholar
  66. Michels C (1998) Das Papier 52:3–8Google Scholar
  67. Michels C, Maron R, Taeger E (1994) Lenz Ber 9:57–60Google Scholar
  68. Nechwatal A, Nicolai M, Mieck K-P (1996) Text Chem Color 28:24–27Google Scholar
  69. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941PubMedCrossRefGoogle Scholar
  70. Pääkko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499CrossRefGoogle Scholar
  71. Pauly H (1897) German Patent 98 642Google Scholar
  72. Pinnow M, Fink H-P, Fanter C, Kunze J (2008) Macromol Symp 262:129–139CrossRefGoogle Scholar
  73. Pirard R, Rigacci A, Maréchal JC, Quenard D, Chevalier B, Achard P, Pirard JP (2003) Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. Polymer 44(17):4881–4887CrossRefGoogle Scholar
  74. Pötsch WR (1997) Chem Fiber Intern 47:432Google Scholar
  75. Pötsch WR (1999) Paul Schlack - der Erfinder des Perlons - und die Filmfabrik Wolfen. In: Zur Industriegeschichte der Bitterfelder Region, vol 7, pp 70–76 (ISSN 1432–7406)Google Scholar
  76. Rihm R (2003) Röntgen-Strukturuntersuchungen an Celluloseregeneratfasern. Dissertation, Technical University of BerlinGoogle Scholar
  77. Rooke J, de Matos Passos C, Chatenet M, Sescousse R, Budtova T, Berthon-Fabry S, Mosdale R, Maillard F (2011) Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J Electrochem Soc 158(7):B779–789CrossRefGoogle Scholar
  78. Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules 4:259–264PubMedCrossRefGoogle Scholar
  79. Ruan D, Zhang L, Zhou J, Jin H, Chen H (2004) Macromol Biosci 4:1105–1112PubMedCrossRefGoogle Scholar
  80. Scherer GW, Smith DM, Qiu X, Anderson J (1995) Compression of aerogels. J Non-Cryst Solids 186:316–320CrossRefGoogle Scholar
  81. Schulze T, Kosan B, Niemz F-G, Mooz M, Krieg M, Meister F (2009) Technical opportunities for shaping natural polymers by environmentally friendly technologies. In: Proceedings European Polymer Congress, July, 12–17, Graz, AustriaGoogle Scholar
  82. Schützenberger S (1865) Comp Rend 61:485–486Google Scholar
  83. Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose-NaOH-water solutions. Cellulose 16:417–426CrossRefGoogle Scholar
  84. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774CrossRefGoogle Scholar
  85. Sescousse R, Gavillon R, Budtova T (2011a) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774CrossRefGoogle Scholar
  86. Sescousse R, Gavillon R, Budtova T (2011b) Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765CrossRefGoogle Scholar
  87. Sheridan RL, Morgan JR, Mohamed R (2002) Biomaterials in burn, wound dressings. In: Severian D (ed) Handbook of polymeric biomaterials. Marcel Dekker, New YorkGoogle Scholar
  88. Struszczyk H, Wawro D, Ciechańska D, Nousiainen P, Dolk M (1991) Direct dissolving cellulose: behaviour and properties. In: Cellulose ’91 conference, New OrleansGoogle Scholar
  89. Struszczyk H, Ciechańska D, Wawro D (1995) Fibres Text East Eur 3(1):47–49Google Scholar
  90. Struszczyk H, Wawro D, Starostka P, Mikolajscyk W, Urbanowski (1997) A PL 188788 A “Method for fabrication of fibres, films and other products from cellulose”, 20/11/1997Google Scholar
  91. Struszczyk H, Wawro D, Starostka P, Mikolajscyk W, Urbanowski A (2000a) US 6,106,763 A “Process for producing cellulosic mouldings”, 22/08/2000Google Scholar
  92. Struszczyk H, Wawro D, Starostka P, Mikolajscyk W, Urbanowski A (2000b) EP 1317573 B1 “Process for producing fibres, film, casings and other products from modified soluble cellulose”, 13/09/2000Google Scholar
  93. Struszczyk H, Wesołowska E, Ciechańska D (2000c) Development of the biological utilisation of textile wastes. I. Scaling up of the biodegradation process. Fibres Text East Eur 8(2 (29)):74–78Google Scholar
  94. Swatloski RP, Rogers RD, Holbrey JD (2001) WO 03/029329 A3, “Dissolution and processing of cellulose using ionic liquids”, 31/07/2001Google Scholar
  95. Thiele E (1901) German Patent 154 507Google Scholar
  96. Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papapdoupoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971CrossRefGoogle Scholar
  97. Voges M, Brück M, Fink H-P, Gensrich J (2000) The CarbaCell process – an environmentally friendly alternative for cellulose man-made fibre production. In: Proceedings of the Akzo-Nobel Cellulosic Man-made Fibre Seminar, StenungsundGoogle Scholar
  98. Vorbach D, Taeger E (1995) DE 19542533 “Highly shape-sensitive sensor material production method for humidity, stress or temperature sensor”, 15/11/1995Google Scholar
  99. Vorbach D, Taeger E, Schulze T (1999) DE 19910012 “Verfahren zur Herstellung von Formkörpern”, 08/03/1999Google Scholar
  100. Voss J (1961) Svensk Papperstidn 64:863–871Google Scholar
  101. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  102. Wawro D, Stęplewski W, Bodek A (2009) Manufacture of cellulose fibres from alkaline solutions of hydrothermally-treated cellulose pulp. Fibres Text East Eur 17(3 (74)):18–22Google Scholar
  103. Wendler F, Meister F, Montigny R, Wagener M (2007) Fibres Text East Eur 64–65:41–45Google Scholar
  104. Wendler F, Kosan B, Krieg M, Meister F (2009) Macromol Symp 280:112–122CrossRefGoogle Scholar
  105. Woodings C (2004) Regenerated cellulose fibres. Woodhead Publishing Limited, CambridgeGoogle Scholar
  106. Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (1990a) Br Polym J 22(2):121–128CrossRefGoogle Scholar
  107. Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (1990b) Br Polym J 22(1):73–83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Frank Wendler
    • 2
  • Thomas Schulze
    • 3
  • Danuta Ciechanska
    • 4
  • Ewa Wesolowska
    • 5
  • Dariusz Wawro
    • 5
  • Frank Meister
    • 1
    Email author
  • Tatiana Budtova
    • 6
  • Falk Liebner
    • 7
  1. 1.Abt.-Ltr. Chemische ForschungThuringian Institute for Textile and Plastics ResearchRudolstadtGermany
  2. 2.Bozetto GmbHKrefeldGermany
  3. 3.Thuringian Institute for Textile and Plastics ResearchRudolstadtGermany
  4. 4.Institute of Biopolymers and Chemical FibresŁódźPoland
  5. 5.Institute for Biopolymers and Chemical FibresŁódźPoland
  6. 6.Mines ParisTech, Centre de Mise en Forme des Matériaux – CEMEF, UMR CNRS 7635Sophia-AntipolisFrance
  7. 7.Department of ChemistryUniversity of Natural Resources and Life SciencesTullnAustria

Personalised recommendations