Advertisement

Chemical Characterization of Polysaccharides

  • Axel Rußler
  • Anna Bogolitsyna
  • Gerhard Zuckerstätter
  • Antje Potthast
  • Thomas Rosenau
Chapter

Abstract

The chemical characterization of polysaccharides is an absolute request for a multitude of scientific and industrial applications that go beyond the simple use of polysaccharides where the physical characterization and the knowledge of usage-dependent behavior by specific tests are sufficient. Successful process optimization and development are today only possible by knowing and controlling the details of the molecular basis. Hence, chemical analysis of polysaccharides covers a broad range of chemical problems and structural hierarchies within the molecules. This leads to a diversity of methods necessary for a complete chemical characterization of a polysaccharide sample. This chapter reviews the main methods that can be used for performing a detailed chemical characterization of polysaccharides.

Keywords

Capillary Electrophoresis Cellulosic Material Linkage Pattern Anomeric Configuration Alien Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adden R, Mischnick P (2005) A novel method for the analysis of the substitution pattern of O-methyl-[alpha]- and [beta]-1,4-glucans by means of electrospray ionisation-mass spectrometry/collision induced dissociation. Int J Mass Spectrom 242(1):63–73Google Scholar
  2. Adden R, Melander C et al (2009) The applicability of enzymes in cellulose ether analysis. Macromol Symp 280:36–44Google Scholar
  3. Adorjan I, Potthast A et al (2005) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: Studies on model compounds and pulps. Cellulose 12(1):51–57Google Scholar
  4. Albersheim P, Nevins DJ et al (1967) A method for the analysis of sugars in plant cell-wall polysaccharides by gas–liquid chromatography. Carbohydr Res 5(3):340–345Google Scholar
  5. Alexandru L, Rogovin ZA (1953) Verteilung der Thiocarbonatgru ppen zwischen den primären und sekundären Alkoholgru ppen im Cellulosexanthogenat. J Allg Chem (USSR) 23:1203–1205Google Scholar
  6. Allard B, Derenne S (2009) Microwave assisted extraction and hydrolysis: an alternative to pyrolysis for the analysis of recalcitrant organic matter? Application to a forest soil (Landes de Gascogne, France). Org Geochem 40(9):1005–1017Google Scholar
  7. An HJ, Franz AH et al (2003) Improved capillary electrophoretic separation and mass spectrometric detection of oligosaccharides. J Chromatogr A 1004:121–129PubMedGoogle Scholar
  8. Andersson S-I, Samuelson O et al (1983) Structure of the reducing end-groups in spruce xylan. Carbohydr Res 111(2):283–288Google Scholar
  9. Arisz PW, Kauw HJJ et al (1995) Substituent distribution along the cellulose backbone in O-methylcelluloses using GC and FAB-MS for monomer and oligomer analysis. Carbohydr Res 271(1):1–14Google Scholar
  10. Bedouet L, Courtois B et al (2003) Rapid quantification of O-acetyl and O-methyl residues in pectin extracts. Carbohydr Res 338(4):379–383PubMedGoogle Scholar
  11. Bikova T, Treimanis A (2002) Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: a review. Carbohydr Polym 48(1):23–28Google Scholar
  12. Black GE, Fox A (1996) Recent progress in the analysis of sugar monomers from complex matrices using chromatography in conjunction with mass spectrometry or stand-alone tandem mass spectrometry. J Chromatogr A 720(1–2):51–60Google Scholar
  13. Blüher A, Vogelsanger B (2001) Mass deacidification of paper. Chimia 55:981Google Scholar
  14. Bohrn R, Potthast A et al (2005) Synthesis and testing of a novel fluorescence label for carboxyls in carbohydrates and cellulosics. Synlett 20:3087–3090Google Scholar
  15. Bohrn R, Potthast A et al (2006) The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7(6):1743–1750PubMedGoogle Scholar
  16. Bui A, Kocsis B et al (2008) Methodology to label mixed carbohydrate components by APTS. J Biochem Biophys Methods 70:1313–1316PubMedGoogle Scholar
  17. Calvini P, Gorassini A et al (2006) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40(2):177–183Google Scholar
  18. Campa C, Coslovi A et al (2006) Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: a tabulated review. Electrophoresis 27:2027–2050PubMedGoogle Scholar
  19. Capitani D, Porro F et al (2000) High field NMR analysis of the degree of substitution in carboxymethyl cellulose sodium salt. Carbohydr Polym 42(3):283–286Google Scholar
  20. Chandra K, Ghosh K et al (2009) Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum). Carbohydr Res 344(16):2188–2194PubMedGoogle Scholar
  21. Charlwood J, Birrell H et al (2000) A probe for the versatile analysis and characterization of N-linked oligosaccharides. Anal Chem 72:1453–1461PubMedGoogle Scholar
  22. Chen F-TA, Evangelista RA (1995) Analysis of mono- and oligosaccharide isomers derivatized with 9-aminopyrene-1,4,6-trisulfonate by capillary electrophoresis with laser-induced fluorescence. Anal Biochem 230:273–280PubMedGoogle Scholar
  23. Chen Y-R, Tseng M-C et al (2003) A low-flow ce/electrospray ionization MS interface for capillary zone electrophoresis, large-volume sample stacking, and micellar electrokinetic chromatography. Anal Chem 75:503–508PubMedGoogle Scholar
  24. Chen G, Zhang L et al (2005) Determination of mannitol and three sugars in Ligustrum lucidum Ait. by capillary electrophoresis with electrochemical detection. Anal Chim Acta 530:15–21Google Scholar
  25. Chen G, Zhang L et al (2006) Determination of glycosides and sugars in Moutan Cortex by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal 41:129–134PubMedGoogle Scholar
  26. Chen Y, Xie M-Y et al (2008) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107(1):231–241Google Scholar
  27. Cheng X, Zhang S et al (2008) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode. Food Chem 106:830–835Google Scholar
  28. Chiesa C, Horvath C (1993) Capillary zone electrophoresis of malto-oligosaccharides derivatized with 8-aminonaphthalene-1,3,6-trisulfonic acid. J Chromatogr A 645(2):337–352Google Scholar
  29. Chiesa C, O'Neil RA et al (eds) (1996) Capillary electrophoresis in analytical biotechnology. CRC Press, Boca Raton, FLGoogle Scholar
  30. Chu Q, Fu L et al (2005) Fast determination of sugars in Coke and Diet Coke by miniaturized capillary electrophoresis with amperometric detection. J Sep Sci 28:234–238PubMedGoogle Scholar
  31. Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131(2):209–217Google Scholar
  32. Cohen A, Schagerlöf H et al (2004) Liquid chromatography-mass spectrometry analysis of enzyme-hydrolysed carboxymethylcellulose for investigation of enzyme selectivity and substituent pattern. J Chromatogr A 1029(1–2):87–95PubMedGoogle Scholar
  33. Cortacero-Ramirez S, Segura-Carretero A et al (2004) Analysis of carbohydrates in beverages by capillary electrophoresis with precolumn derivatization and UV detection. Food Chem 87:471–476Google Scholar
  34. Cui SW (2005) Structural analysis of polysaccharides. In: Cui SW (ed) Food carbohydrates - chemistry, physical properties and applications. CRC Press, Boca Raton, FL, p 56Google Scholar
  35. Cyrot J (1957) Dosage des fonctions oximables de la cellulose dégradée. J Chim Anal 39:449Google Scholar
  36. Dabek-Zlotorzynska E, Dlouhy JF (1994) Capillary zone electrophoresis with indirect UV detection of organic anions using 2,6-naphthalenedicarboxylic acid. J Chromatogr A 685(1):145–153Google Scholar
  37. Dahlman O, Jacobs A et al (2000) Analysis of carbohydrates in wood and pulps employing enzymatic hydrolysis and subsequent capillary zone electrophoresis. J Chromatogr A 891(1):157–174PubMedGoogle Scholar
  38. De Ruiter GA, Schols HA et al (1992) Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem 207(1):176–185PubMedGoogle Scholar
  39. Dicke R, Rahn K et al (2001) Starch derivatives of high degree of functionalization. Part 2. Determination of the functionalization pattern of p-toluenesulfonyl starch by peracylation and NMR spectroscopy. Carbohydr Polym 45(1):43–51Google Scholar
  40. Doering H (1956) Determination of carboxyl groups in cellulose by complexometry. Das Papier 10:140–141Google Scholar
  41. Donald AM, Buschow KHJ, et al. (2001) Polysaccharide crystallization. In: Buschow et al. (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 77147718Google Scholar
  42. Dong S, Zhang S et al (2007) Simultaneous determination of sugars and ascorbic acid by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and Cu2O. J Chromatogr A 1161:327–333PubMedGoogle Scholar
  43. Dunbrant SSO (1965) Determination of primary and secondary xanthate groups in cellulose-xanthate. J Appl Polym Sci 9:2489–2499Google Scholar
  44. Dupont A-L, Mortha G (2004) Comparative evaluation of size-exclusion chromatography and viscometry for the characterisation of cellulose. J Chromatogr A 1026(1–2):129–141PubMedGoogle Scholar
  45. Ebringerova A (2006) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12Google Scholar
  46. Ebringerova A, Hromadkova Z et al (2005) Hemicellulose. Adv Polym Sci 186:1–67Google Scholar
  47. Eremeeva T (2003) Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review. J Biochem Biophysl Methods 56(1–3):253–264Google Scholar
  48. Eremeeva TE, Bykova TO (1998) SEC of mono-carboxymethyl cellulose (CMC) in a wide range of pH; Mark-Houwink constants. Carbohydr Polym 36(4):319–326Google Scholar
  49. Erler U, Mischnick P et al (1992) Determination of the substitution patterns of cellulose methyl ethers by HPLC and GLC - comparison of methods. Polym Bull 29:349–356Google Scholar
  50. France RR, Cumpstey I et al (2000) Fluorescence labelling of carbohydrates with 2-aminobenzamide (2AB). Tetrahedron Asymmetry 11(24):4985–4994Google Scholar
  51. García O, Torres AL et al (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 9(2):115–125Google Scholar
  52. Gillespie DT, Hammons HK (1999) Analysis of polysaccharides by SEC3. In: Provder T (ed) Chromatography of Polymers, vol 731. American Chemical Society, Washington, DC, pp 288–310Google Scholar
  53. Gohdes M, Mischnick P (1998) Determination of the substitution pattern in the polymer chain of cellulose sulfates. Carbohydr Res 309(1):109–115Google Scholar
  54. Gohdes M, Mischnick P et al (1997) Methylation analysis of cellulose sulphates. Carbohydr Polym 33(2–3):163–168Google Scholar
  55. Gonera A, Goclik V et al (2002) Preparation and structural characterisation of O-aminopropyl starch and amylose. Carbohydr Res 337(21–23):2263–2272PubMedGoogle Scholar
  56. Gratzl JS (1985) Lichtinduzierte Vergilbund von Zellstoffen pp Ursachen und Verhütung. Das Papier 39(10A):V14–V23Google Scholar
  57. Grill E, Huber C et al (1993) Capillary zone electrophoresis of p-aminobenzoic acid derivatives of aldoses, ketoses and uronic acids. Electrophoresis 14:1004–1010PubMedGoogle Scholar
  58. Haggkvist M, Li T-Q et al (1998) Effects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1 H and 2 H NMR relaxation. Cellulose 5(1):33–49Google Scholar
  59. Harding SE (2005) Analysis of polysaccharides by ultracentrifugation. size, conformation and interactions in solution. In: Heinze T (ed) Polysaccharides I - structure, characterisation and use. Springer, Berlin, pp 211–254Google Scholar
  60. Hase S, Ibuki T et al (1984) Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem 95:197–203PubMedGoogle Scholar
  61. Heinrich J (1999a) Strukturaufklärung von Cellulosederivaten und Galactanen mittels chemischer, chromatographischer und massenspektrometrischer Methoden. Fachbereich Chemie, Universität Hamburg, HamburgGoogle Scholar
  62. Heinrich JPM (1999b) Determination of the substitution pattern in the polymer chain of cellulose acetates. J Polym Sci A Polym Chem 37(15):3011–3016Google Scholar
  63. Heinze U, Heinze T et al (1999) Synthesis and structure characterization of 2,3-O-carboxymethylcellulose. Macromol Chem Phys 200(4):896–902Google Scholar
  64. Heinze U, Schaller J et al (2000) Characterisation of regioselectively functionalized 2,3-O-carboxymethyl cellulose by enzymatic and chemical methods. Cellulose 7:161–175Google Scholar
  65. Henniges U, Prohaska T et al (2006) A fluorescence labeling approach to assess the deterioration state of aged papers. Cellulose 13(4):421–428Google Scholar
  66. Holfstetter-Kuhn S, Paulus A et al (1991) Influence of borate complexation on the electrophoretic behavior of carbohydrates in capillary electrophoresis. Anal Chem 63:1541–1547Google Scholar
  67. Honda S, Suzuki S et al (1991a) Capillary zone electrophoresis of reducing mono- and oligo-saccharides as the borate complexes of their 3-methyl-1-phenyl-2-pyrazolin-5-one derivatives. Carbohydr Res 215(1):193–198Google Scholar
  68. Honda S, Yamamoto K et al (1991b) High-performance capillary zone electrophoresis of carbohydrates in the presence of alkaline earth metal ions. J Chromatogr A 588(1–2):327–333Google Scholar
  69. Horner S, Puls J et al (1999) Enzyme-aided characterisation of carboxymethylcellulose. Carbohydr Polym 40(1):1–7Google Scholar
  70. Huber CG, Hoelzl G (eds) (2001) CapillaryElectrochromatography. Amsterdam, ElsevierGoogle Scholar
  71. Hult E-L, Larsson PT et al (2002) A comparative CP/MAS 13C-NMR study of the supermolecular structure of polysaccharides in sulphite and kraft pulps. Holzforschung 56(2):179–184Google Scholar
  72. Husemann E, Weber OH (1942) Der Carboxylgehalt von Faser- und Holzcellulosen. J Prakt Chem 159:334–342Google Scholar
  73. Issaq HJ, Janini GM et al (2004) Sheathless electrospray ionization interfaces for capillary electrophoresis–mass spectrometric detection. Advantages and limitations. J Chromatogr A 1053:37–42PubMedGoogle Scholar
  74. Ivanov AR, Nazimov IV et al (2000) Direct determination of amino acids and carbohydrates by high-performance capillary electrophoresis with refractometric detection. J Chromatogr A 894:253–257Google Scholar
  75. Jager AV, Tonin FG et al (2007) Comparative evaluation of extraction procedures and method validation for determination of carbohydrates in cereals and dairy products by capillary electrophoresis. J Sep Sci 30:586–594PubMedGoogle Scholar
  76. Kabel MA (2002) Characterisation of complex xylo-oligosaccharides from xylan rich by-products. PhD thesis. Department of Agrotechnology and Food Sciences, Wageningen University, WageningenGoogle Scholar
  77. Kabel MA, de Waard P et al (2003) Location of O-acetyl substituents in xylo-oligosaccharides obtained from hydrothermally treated Eucalyptus wood. Carbohydr Res 338(1):69–77PubMedGoogle Scholar
  78. Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6(1):23–40Google Scholar
  79. Katzenellenbogen E, Kocharova NA et al (2009) Structure of an abequose-containing O-polysaccharide from Citrobacter freundii O22 strain PCM 1555. Carbohydr Res 344(13):1724–1728PubMedGoogle Scholar
  80. Kelli JF, Ramaley L et al (1997) Capillary zone electrophoresis-electrospray mass spectrometry at submicroliter flow rates: practical considerations and analytical performance. Anal Chem 69:51–60Google Scholar
  81. Kiwitt-Haschemie K, Renger A et al (1996) A comparison between reductive-cleavage and standard methylation analysis for determining structural features of galactomannans. Carbohydr Polym 30(1):31–35Google Scholar
  82. Klampfl C (2006) Recent advances in the application of capillary electrophoresis with mass spectrometric detection. Electrophoresis 27:3–34PubMedGoogle Scholar
  83. Klampfl CW, Buchberger W (2001) Determination of carbohydrates by capillary electrophoresis with electrospray-mass spectrometric detection. Electrophoresis 22(13):2737–2742PubMedGoogle Scholar
  84. Klemm D, Philipp B et al (1998) Comprehensive cellulose chemistry, vol 1, Fundamentals and analytical methods. Wiley-VCH, WeinheimGoogle Scholar
  85. Klockow A, Amado R et al (1995) Separation of 8-aminonaphthalene-l,3,6-trisulfonic acid-labelled neutral and sialylated N-linked complex oligosaccharides by capillary electrophoresis. J Chromatogr A 716:241–257PubMedGoogle Scholar
  86. Klockow A, Amado R et al (1996) The influence of buffer composition on separation efficiency and resolution in capillary electrophoresis of 8-aminonaphthalene-1,3,6-trisulfonic acid labeled monosaccharides and complex carbohydrates. Electrophoresis 17:110–119PubMedGoogle Scholar
  87. Koelhed M, Karlberg B (2005) Capillary electrophoretic separation of sugars in fruit juices using on-line mid infrared Fourier transform detection. Analyst 130:772–778Google Scholar
  88. Kondo A, Suzuki J et al (1990) Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agric Biol Chem 54(8):2169–2170PubMedGoogle Scholar
  89. Krainz K, Potthast A et al (2009) Effects of selected key chromophores on cellulose integrity upon bleaching 10th EWLP, Stockholm, Sweden, August 25-28, 2008. Holzforschung 63(6):647–655Google Scholar
  90. Kristiansen KA, Ballance S et al (2009) An evaluation of tritium and fluorescence labelling combined with multi-detector SEC for the detection of carbonyl groups in polysaccharides. Carbohydr Polym 76(2):196–205Google Scholar
  91. Kumirska J, Czerwicka M et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8(5):1567–1635PubMedGoogle Scholar
  92. Laine CTTVAVT (2002) Methylation analysis as a tool for structural analysis of wood polysaccharides. Holzforschung 56(6):607–614Google Scholar
  93. Larsson PT, Wickholm K et al (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25Google Scholar
  94. Lee CK, Gray GR (1995) Analysis of positions of substitution of O-acetyl groups in partially O-acetylated cellulose by the reductive-cleavage method. Carbohydr Res 269(1):167–174Google Scholar
  95. Lee S-J, Altaner C et al (2003) Determination of the substituent distribution along cellulose acetate chains as revealed by enzymatic and chemical methods. Carbohydr Polym 54(3):353–362Google Scholar
  96. Levigne S, Thomas M et al (2002) Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocolloids 16(6):547–550Google Scholar
  97. Lewin L (1972) In: Whistler RL, BeMiller JN (eds) Methods in carbohydrate chemistry, vol 6. Academic, New York, p 76Google Scholar
  98. Lewin M (1997) Oxidation and aging of cellulose. Macromol Symp 118:715–724Google Scholar
  99. Li DT, Sheen JF et al (2000) Structural analysis of chromophore-labeled disaccharides by capillary electrophoresis tandem mass spectrometry using ion trap mass spectrometry. J Am Soc Mass Spectrom 11:292–300PubMedGoogle Scholar
  100. Li J, Wan Y et al (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29(5):1635–1642Google Scholar
  101. Liebert T, Pfeiffer K et al (2005) Carbamoylation applied for structure determination of cellulose derivatives. Macromol Symp 223(1):93–108Google Scholar
  102. Liitiä T, Maunu SL et al (2000) Solid state NMR studies on cellulose crystallinity in fines and bulk fibres separated from refined kraft pulp. Holzforschung 54(6):618–624Google Scholar
  103. Liu J, Shirota O et al (1991) Capillary electrophoresis of amino sugars with laser-induced fluorescence detection. Anal Chem 63:413–417PubMedGoogle Scholar
  104. Liu Y, Shu C et al (1997) High-performance capillary electrophoretic separation of carbohydrates with indirect UV detection using diethylamine and borate as electrolyte additives. J Capillary Electrophor 4(3):97–103PubMedGoogle Scholar
  105. Manelius R, Buléon A et al (2000) The substitution pattern in cationised and oxidised potato starch granules. Carbohydr Res 329(3):621–633PubMedGoogle Scholar
  106. Mazumder S, Lerouge P et al (2005) Structural characterisation of hemicellulosic polysaccharides from Benincasa hispida using specific enzyme hydrolysis, ion exchange chromatography and MALDI-TOF mass spectroscopy. Carbohydr Polym 59(2):231–238Google Scholar
  107. Mazzarino M, De Angelis F et al (2010) Microwave irradiation for a fast gas chromatography–mass spectrometric analysis of polysaccharide-based plasma volume expanders in human urine. J Chromatogr B 878(29):3024–3032Google Scholar
  108. Mechref Y, Ostrander GK et al (1995) Capillary electrophoresis of carboxylated carbohydrates. Part 2. Selective precolumn derivatization of sialooligosaccharides derived from gangliosides with 7-aminonaphthalene-l,3-disulfonic acid fluorescing tag. Electrophoresis 16:1499–1504PubMedGoogle Scholar
  109. Mechref Y, Ostrander GK et al (1997) Capillary electrophoresis of carboxylated carbohydrates. IV. Adjusting the separation selectivity of derivatized carboxylated carbohydrates by controlling the electrolyte ionic strength at subambient temperature and in the absence of electroosmotic flow. J Chromatogr A 792:75–82PubMedGoogle Scholar
  110. Melander C, Tømmeraas K (2010) Heterogeneous hydrolysis of hyaluronic acid in ethanolic HCl slurry. Carbohydr Polym 82(3):874–879Google Scholar
  111. Mihranyan A, Llagostera AP et al (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269(2):433–442PubMedGoogle Scholar
  112. Mischnick P (1991) Determination of the substitution pattern of cellulose acetates. J Carbohydr Chem 10(4):711–722Google Scholar
  113. Mischnick P (1997) New developments in the analysis of the substitution pattern of polysaccharide derivatives. Macromol Symp 120:281–290Google Scholar
  114. Mischnick P (2001) Challenges in structure analysis of polysaccharide derivatives. Cellulose 8(4):245–257Google Scholar
  115. Mischnick P (2002) Challenges in structure analysis of polysaccharide derivatives. Cellulose 00:1–13Google Scholar
  116. Mischnick P, Adden R (2008) Fractionation of polysaccharide derivatives and subsequent analysis to differentiate heterogeneities on various hierarchical levels. Macromol Symp 262:1–7Google Scholar
  117. Mischnick P, Hennig C (2001) A new model for the substitution patterns in the polymer chain of polysaccharide derivatives. Biomacromolecules 2(1):180–184PubMedGoogle Scholar
  118. Mischnick P, Evers B et al (1994) Analysis of oligosaccharides containing 2-deoxy-alpha-D-arabino-hexosyl residues by the reductive-cleavage method. Carbohydr Res 264(2):293–304PubMedGoogle Scholar
  119. Mischnick P, Heinrich J et al (2000) Structure analysis of 1,4-glucan derivatives. Macromol Chem Phys 201:1985–1995Google Scholar
  120. Mischnick P, Niedner W et al (2005) Possibilities of mass spectrometry and tandem-mass spectrometry in the analysis of cellulose ethers. Macromol Symp 223(1):67–78Google Scholar
  121. Mischnick P, Momcilovic D et al (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210PubMedGoogle Scholar
  122. Momenbeik F, Johns C et al (2006) Sensitive determination of carbohydrates labelled with p-nitroaniline by capillary electrophoresis with photometric detection using a 406 nm light-emitting diode. Electrophoresis 27:4039–4046PubMedGoogle Scholar
  123. Mort AJ, Chen EMW (1996) Separation of 8-aminonaphthalene-l,3,6-trisulfonate (ANTS)-labeled oligomers containing galacturonic acid by capillary electrophoresis: application to determining the substrate specificity of endopolygalacturonases. Electrophoresis 17:379–383PubMedGoogle Scholar
  124. Mukerjea R, Kim D et al (1996) Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr Res 292:11–20Google Scholar
  125. Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11:23–32Google Scholar
  126. Nguyen DT, Lerch H et al (1997) Separation of derivatized carbohydrates by co-electroosmotic capillary electrophoresis. Chromatographia 46(3/4):113–121Google Scholar
  127. Nie S-P, Xie M-Y (2011) A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids 25(2):144–149Google Scholar
  128. Oh SY, Yoo DI et al (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428PubMedGoogle Scholar
  129. Osborn HMI, Lochey F et al (1999) Analysis of polysaccharides and monosaccharides in the root mucilage of maize (Zea mays L.) by gas chromatography. J Chromatogr A 831(2):267–276Google Scholar
  130. Oudhoff KA, Buijtenhuijs FA et al (2004) Determination of the degree of substitution and its distribution of carboxymethylcelluloses by capillary zone electrophoresis. Carbohydr Res 339(11):1917–1924PubMedGoogle Scholar
  131. Perera A, Meda V et al (2010) Resistant starch: a review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res Int 43(8):1959–1974Google Scholar
  132. Petzold K, Schwikal K et al (2006) Carboxymethyl xylan - synthesis and detailed structure characterization. Carbohydr Polym 64(2):292–298Google Scholar
  133. Phillipp B, Rehder W et al (1965) Carboxylgruppenbestimmung in Chemiezellstoffen. Das Papier 19:1–9Google Scholar
  134. Plocek J, Chmelik J (1997) Separation of disaccharides as their borate complexes by capillary electrophoresis with indirect detection in visible range. Electrophoresis 18:1148–1152PubMedGoogle Scholar
  135. Potthast A, Röhrling J et al (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4(3):743–749PubMedGoogle Scholar
  136. Potthast A, Schiehser S et al (2004) Effect of UV radiation on the carbonyl distribution in different pulps. Holzforschung 58(6):597–602Google Scholar
  137. Potthast A, Rosenau T et al (2006) Analysis of oxidized functionalities in cellulose. In: Klemm D (ed) Polysaccharides II. Springer, Heidelber, pp 1–48Google Scholar
  138. Putnam ES (1964) The exchange reaction between calcium and carboxyl groups in cellulose. TAPPI J 47:549–554Google Scholar
  139. Racaityte K, Kiessig S et al (2005) Application of capillary zone electrophoresis and reversed-phase high-performance liquid chromatography in the biopharmaceutical industry for the quantitative analysis of the monosaccharides released from a highly glycosylated therapeutic protein. J Chromatogr A 1079:354–365PubMedGoogle Scholar
  140. Rana V, Kumar V et al (2009) Structure of the oligosaccharides isolated from Dalbergia sissoo Roxb. leaf polysaccharide. Carbohydr Polym 78(3):520–525Google Scholar
  141. Rehder W, Philipp B et al (1965) Ein Beitrag zur Analytik der Carbonylgru ppen in Oxycellulosen und technischen Zellstoffen. Das Papier 19(9):502Google Scholar
  142. Ren J-L, Sun R-C (2010) Hemicelluloses. In: Sun R-C (ed) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam, pp 73–130Google Scholar
  143. Ristolainen M (1999) Characterization of totally chlorine-free effluents from Kraft pulp bleaching II. Analysis of carbohydrate-derived constituents after acid hydrolysis by capillary zone electrophoresis. J Chromatogr A 832:203–209Google Scholar
  144. Röder T, Moosbauer J et al (2006a) Crystallinity determination of man-made cellulose fibers – comparison of analytical methods. Lenzinger Ber 86:132–136Google Scholar
  145. Röder T, Moosbauer J et al (2006b) Crystallinity determination of native cellulose – comparison of analytical methods. Lenzinger Ber 86:85–89Google Scholar
  146. Röder T, Moosbauer J et al (2009) Comparative characterisation of man-made regenerated cellulose fibres. Lenzinger Ber 87:98–105Google Scholar
  147. Röhrling J, Potthast A et al (2001) Synthesis and testing of a novel fluorescence label for carbonyls in carbohydrates and cellulosics. Synlett 5:682–684Google Scholar
  148. Röhrling J, Potthast A et al (2002a) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3(5):969–975PubMedGoogle Scholar
  149. Röhrling J, Potthast A et al (2002b) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3(5):959–968PubMedGoogle Scholar
  150. Rosenau T, Potthast A et al (2001) Hydrolytic processes and condensation reactions in the cellulose solvent system N, N-dimethylacetamide/lithium chloride. Part 1. Holzforschung 55(6):661–666Google Scholar
  151. Rosenau T, Potthast A et al (2004) Isolation and identification of residual chromophores in cellulosic materials. Polymer 45(19):6437–6443Google Scholar
  152. Rosenau T, Potthast A et al (2005a) Isolation and identification of residual chromophores in cellulosic materials, vol 223. Wiley-VCH, Weinheim, pp 239–252Google Scholar
  153. Rosenau T, Potthast A et al (2005b) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 2: Isolation and identification of chromophores. Cellulose 12(2):197–208Google Scholar
  154. Rosenau T, Potthast A et al (2007) Isolation and identification of residual chromophores from aged bleached pulp samples. Holzforschung 61:656–661Google Scholar
  155. Rovio S, Yli-Kauhaluoma J et al (2007) Determination of neutral carbohydrates by CZE with direct UV detection. Electrophoresis 28:3129–3135PubMedGoogle Scholar
  156. Rovio S, Simolin H et al (2008) Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. J Chromatogr A 1185:139–144PubMedGoogle Scholar
  157. Rovio S, Siren K et al (2011) Application of capillary electrophoresis to determine metal cations, anions, organic acids, and carbohydrates in some Pinot Noir red wines. Food Chem 124:1194–1200Google Scholar
  158. Ruiz-Matute AI, Hernández-Hernández O et al (2010) Derivatization of carbohydrates for GC and GC-MS analyses. J Chromatogr B Analyt Technol Biomed Life Sci 879(17–18):1226–1240PubMedGoogle Scholar
  159. Rußler A, Lange T et al (2005a) A novel method for analysis of xanthate group distribution in viscoses. Macromol Symp 223(1):189–200Google Scholar
  160. Russler A, Potthast A, et al (2005a) New methylation analysis of viscose. Institute of Chemistry, Slovak Academy of Sciences: 13th European carbohydrate symposium, 21–26 August, Bratislava; Book of Abstracts, Institute of Chemistry, Slovak Academy of SciencesGoogle Scholar
  161. Russler A, Saake B, et al (2005b) A novel approach to assess xanthate group distribution in viscose. Japanese-European workshop on cellulose and functional polysaccharides. Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, p 74Google Scholar
  162. Rußler A, Potthast A et al (2006) Determination of substituent distribution of viscoses by GPC. Holzforschung 60(5):467–473Google Scholar
  163. Rydlund A, Dahlman O (1996) Efficient capillary zone electrophoretic separation of wood-derived neutral and acidic mono- and oligosaccharides. J Chromatogr A 738:129–140PubMedGoogle Scholar
  164. Rydlund A, Dahlman O (1997) Oligosaccharides obtained by enzymatic hydrolysis of birch kraft pulp xylan: analysis by capillary zone electrophoresis and mass spectrometry. Carbohydr Res 30:95–102Google Scholar
  165. Saake B, Horner S et al (2000) Detailed investigation on the molecular structure of carboxymethyl cellulose with unusual substitution pattern by means of an enzyme-supported analysis. Macromol Chem Phys 201(15):1996–2002Google Scholar
  166. Saake B, Kruse T et al (2001) Investigation on molar mass, solubility and enzymatic fragmentation of xylans by multi-detected SEC chromatography. Bioresour Technol 80(3):195–204PubMedGoogle Scholar
  167. Sanz ML, Martínez-Castro I (2007) Recent developments in sample preparation for chromatographic analysis of carbohydrates. J Chromatogr A 1153(1–2):74–89PubMedGoogle Scholar
  168. Sartori J, Potthast A et al (2003) Alkaline degradation kinetics and CE-separation of cello- and xylooligomers. Part I. Carbohydr Res 338:1209–1216PubMedGoogle Scholar
  169. Sato H, Mizutani S-I et al (2002) Determination of degree of substitution in N-carboxyethylated chitin derivatives by pyrolysis-gas chromatography in the presence of oxalic acid. J Anal Appl Pyrolysis 64(2):177–185Google Scholar
  170. Schelosky N, Röder T et al (1999) Molmasseverteilug cellulosischer Produkte mittels Grössenausschlusschromatographie in DMAc/LiCl. Das Papier 53(12):728–738Google Scholar
  171. Schleicher H, Lang H (1994) Carbonyl and carboxyl groups in pulps and cellulose products. Das Papier 12:765–768Google Scholar
  172. Schwaiger H, Oefner PJ et al (1994) Capillary zone electrophoresis and micellar electrokinetic chromatography of 4-aminobenzonitrile carbohydrate derivatives. Electrophoresis 15:941–952PubMedGoogle Scholar
  173. Schwikal K, Heinze T et al (2005) Cationic xylan derivatives with high degree of functionalization. Macromol Symp 232(1):49–56Google Scholar
  174. Senso A, Franco P et al (2000) Characterization of doubly substituted polysaccharide derivatives. Carbohydr Res 329(2):367–376PubMedGoogle Scholar
  175. Singh V, Tiwari A et al (2006) Microwave-promoted hydrolysis of plant seed gums on alumina support. Carbohydr Res 341(13):2270–2274PubMedGoogle Scholar
  176. Sixta H (1995). Habilitation thesis, Zellstoffherstellung unter Berücksichtigung umweltfreundlicher, Aufschluß- und Bleichverfahren am Beispiel von Chemiezellstoffen. Technical University of Graz, GrazGoogle Scholar
  177. Sjöberg J, Adorjan I et al (2004) An optimized CZE method for analysis of mono- and oligomeric aldose mixtures. Carbohydr Res 339:2037–2043PubMedGoogle Scholar
  178. Snyder DS, Gibson D et al (2006) Structure of a capsular polysaccharide isolated from Salmonella enteritidis. Carbohydr Res 341(14):2388–2397PubMedGoogle Scholar
  179. Soga T, Heiger DN (1998) Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis. Anal Biochem 261:73–78PubMedGoogle Scholar
  180. Soga T, Ross GA (1999) Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis. J Chromatogr A 837:231–239Google Scholar
  181. Soga T, Serwe M (2000) Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection. Food Chem 69:339–344Google Scholar
  182. Steeneken PAM, Woortman AJJ (1994) Substitution patterns in methylated starch as studied by enzymic degradation. Carbohydr Res 258:207–221Google Scholar
  183. Stefansson M, Novotny M (1994) Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format. Anal Chem 66:1134–1140PubMedGoogle Scholar
  184. Sun Y-X, Liu J-C et al (2010) Purification, composition analysis and antioxidant activity of different polysaccharide conjugates (A PPs) from the fruiting bodies of Auricularia polytricha. Carbohydr Polym 82(2):299–304Google Scholar
  185. Szabolcs O (1961) A colorimetric method for the determination of reducing carbonyl groups in cellulose. Das Papier 15:41Google Scholar
  186. TAPPI (2009) T 249 - Carbohydrate composition of extractive-free wood and wood pulp by gas–liquid chromatography, p 8Google Scholar
  187. TAPPI (2009) TAPPI method T-430 om-99 Copper number of pulp, paper, and paperboard (Braidy)Google Scholar
  188. Thomas M, Chauvelon G et al (2003) Location of sulfate groups on sulfoacetate derivatives of cellulose. Carbohydr Res 338(8):761–770PubMedGoogle Scholar
  189. Tüting W, Adden R et al (2004a) Fragmentation pattern of regioselectively O-methylated maltooligosaccharides in electrospray ionisation-mass spectrometry/collision induced dissociation. Int J Mass Spectrom 232(2):107–115Google Scholar
  190. Tüting W, Wegemann K et al (2004b) Enzymatic degradation and electrospray tandem mass spectrometry as tools for determining the structure of cationic starches prepared by wet and dry methods. Carbohydr Res 339(3):637–648PubMedGoogle Scholar
  191. Vaca-Garcia C, Borredon ME et al (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8(3):225–231Google Scholar
  192. van der Burgt YEM, Bergsma J et al (1998) Distribution of methyl substituents over branched and linear regions in methylated starches. Carbohydr Res 312(4):201–208Google Scholar
  193. van der Burgt YEM, Bergsma J et al (1999) Distribution of methyl substituents over crystalline and amorphous domains in methylated starches. Carbohydr Res 320(1–2):100–107Google Scholar
  194. van der Burgt YE, Bergsma J et al (2000a) Substituent distribution in highly branched dextrins from methylated starches. Carbohydr Res 327(4):423–429PubMedGoogle Scholar
  195. van der Burgt YEM, Bergsma J et al (2000b) Distribution of methyl substituents in amylose and amylopectin from methylated potato starches. Carbohydr Res 325(3):183–191PubMedGoogle Scholar
  196. van der Burgt YEM, Bergsma J et al (2000c) FAB CIDMS/MS analysis of partially methylated maltotrioses derived from methylated amylose: a study of the substituent distribution. Carbohydr Res 329:341–349PubMedGoogle Scholar
  197. Vlasenko EY, Ryan AI et al (1998) The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-[beta]-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzym Microb Technol 23(6):350–359Google Scholar
  198. Walter RH (1998) Isolation, purification, and characterization. In: Steve T (ed) Polysaccharide dispersions. Academic, San Diego, CA, Chapter 7, pp 123155Google Scholar
  199. Wang X, Chen Y (2001) Determination of carbohydrates as their p-sulfophenylhydrazones by capillary zone electrophoresis. Carbohydr Res 332:191–196PubMedGoogle Scholar
  200. Wang X, Chen Y et al (2002) Analysis of carbohydrates by capillary zone electrophoresis with on-line capillary derivatization. J Liq Chrom Rel Technol 25(4):589–600Google Scholar
  201. Wennerblom A (1961) Determination of carbonyl groups in hydrocellulose. Sven Pap 14:519Google Scholar
  202. Wickholm K, Larsson PT et al (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129Google Scholar
  203. Wilke O, Mischnick P (1995) Analysis of cationic starches: determination of the substitution pattern of O-(2-hydroxy-3-trimethylammonium)propyl ethers. Carbohydr Res 275(2):309–318Google Scholar
  204. Willför S, Sundberg K et al (2008) Spruce-derived mannans - a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72(2):197–210Google Scholar
  205. Willför S, Pranovich A et al (2009) Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides-A comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind Crop Prod 29(2–3):571–580Google Scholar
  206. Wilson K (1948) Determination of carboxylic groups in pulp. Sven Pap 51:45–49Google Scholar
  207. Wittgren B, Porsch B (2002) Molar mass distribution of hydroxypropyl cellulose by size exclusion chromatography with dual light scattering and refractometric detection. Carbohydr Polym 49(4):457–469Google Scholar
  208. Yamamoto K, Hamase K et al (2003) 2-Amino-3-phenylpyrazine, a sensitive fluorescence prelabeling reagent for the chromatographic or electrophoretic determination of saccharides. J Chromatogr A 1004(1–2):99–106PubMedGoogle Scholar
  209. Yang L, Wang Z et al (2010) Isolation and structural characterization of a polysaccharide FCAP1 from the fruit of Cornus officinalis. Carbohydr Res 345(13):1909–1913PubMedGoogle Scholar
  210. You J, Sheng X et al (2008) Detection of carbohydrates using new labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone by capillary zone electrophoresis with absorbance (UV). Anal Chim Acta 609:66–75PubMedGoogle Scholar
  211. Yu N, Gray GR (1998a) Analysis of the positions of substitution of acetate and butyrate groups in cellulose acetate-butyrate by the reductive-cleavage method. Carbohydr Res 312(4):225–231Google Scholar
  212. Yu N, Gray GR (1998b) Analysis of the positions of substitution of acetate and propionate groups in cellulose acetate-propionate by the reductive-cleavage method. Carbohydr Res 313(1):29–36Google Scholar
  213. Zamfir A, Peter-Katalinic J (2004) Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research. Electrophoresis 25:1949–1963PubMedGoogle Scholar
  214. Zatkovskis Carvalho A, da Silva JAF et al (2003) Determination of mono- and disaccharides by capillary electrophoresis with contactless conductivity detection. Electrophoresis 24:2138–2143Google Scholar
  215. Zemann A, Nguyen DT et al (1997) Fast separation of underivatized carbohydrates by coelectroosmotic capillary electrophoresis. Electrophoresis 18:1142– 1147PubMedGoogle Scholar
  216. Zhou W, Baldwin RP (1996) Capillary electrophoresis and electrochemical detection of underivatized oligo- and polysaccharides with surfactant-controlled electroosmotic flow. Electrophoresis 17:319–324PubMedGoogle Scholar
  217. Zuckerstätter G, Schild G et al (2009) The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzinger Ber 87:41–49Google Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Axel Rußler
    • 2
  • Anna Bogolitsyna
    • 2
  • Gerhard Zuckerstätter
    • 3
  • Antje Potthast
    • 2
  • Thomas Rosenau
    • 1
  1. 1.Department of Chemistry, Wood, Pulp and Fiber ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
  2. 2.Department of Chemistry, Wood, Pulp and Fiber ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
  3. 3.Kompetenzzentrum Holz GmbHLinzAustria

Personalised recommendations