Advertisement

Cellulose: Chemistry of Cellulose Derivatization

  • Thomas HeinzeEmail author
  • Andreas Koschella
  • Tim Liebert
  • Valeria Harabagiu
  • Sergio Coseri
Chapter

Abstract

This chapter gives an overview on various possibilities of cellulose functionalization. Particular attention was paid on homogeneous-phase conversions of cellulose in reaction media based on both aprotic-dipolar solvents in combination with salts and ionic liquids. Paths for cellulose esterification via in situ activated carboxylic acids are discussed. Not only etherification and esterification of hydroxyl groups lead to novel derivatives, but also oxidation reactions, in particular catalytic approaches, are of great importance. Recent developments in the synthesis of regioselectively functionalized cellulose ethers are reviewed as well. It is demonstrated that advanced synthesis methods, in particular the application of silicon-based protecting groups, are important to get the regioselectively functionalized cellulose ethers of high structural uniformity. Moreover, novel derivatives could be prepared thereof in subsequent reactions like oxidation and 1,3-dipolar cycloaddition reaction of azide- and alkyne-containing cellulose derivatives.

Keywords

Ionic Liquid Cellulose Derivative Oxidize Cellulose Cellulose Sulfate Acetic Acid Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are indebted to Marcel Meiland, Marc Kostag, Jana Wotschadlo, and Torsten Jordan for their technical assistance. One of the authors (S. Coseri) acknowledges the financial support of European Social Fund—“Cristofor I. Simionescu” Postdoctoral Fellowship Programme (ID POSDRU/89/1.5/S/55216), Sectoral Operational Programme Human Resources Development 2007–2013.

References

  1. Abbott AP, Capper G, Davies DL, Rasheed RK (2004) Ionic liquids based upon metal halide/substituted quaternary ammonium salt. Inorg Chem 43: 3447–3452PubMedCrossRefGoogle Scholar
  2. Abbott AP, Bell TJ, Handa S, Stoddart B (2005) O-acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem 7: 705–707CrossRefGoogle Scholar
  3. Arisawa M, Kato C, Kaneko H, Nishida A, Nakagawa M (2000) Concise synthesis of azacycloundecenes using ring-closing metathesis (RCM). J Chem Soc Perkin Trans 1 12:1873–1876CrossRefGoogle Scholar
  4. Bailey WF, Bobbitt JM, Wiberg KB (2007) Mechanism of the oxidation of alcohols by oxoammonium cations. J Org Chem 72:4504–4509PubMedCrossRefGoogle Scholar
  5. Banker GS, Kumar V (1995) Microfibrillated oxycellulose. US Patent 5405953Google Scholar
  6. Bar-Nir BB, Kadla JF (2009) Synthesis and structural characterization of 3-O-ethylene glycol functionalized cellulose derivatives. Carbohydr Polym 76:60–67CrossRefGoogle Scholar
  7. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306CrossRefGoogle Scholar
  8. Biliuta G, Fras L, Strnad S, Harabagiu V, Coseri S (2010) Oxidation of cellulose fibers mediated by nonpersistent nitroxyl radicals. J Polym Sci A Polym Chem 48:4790–4799CrossRefGoogle Scholar
  9. Borisov IM, Shirokova EN, Mudarisova RK, Muslukhov RR, Zimin YS, Medvedeva SA, Tolstikov GA, Monakov YB (2004) Kinetics of oxidation of an arabinogalactan from larch (Larix sibirica L.) in an aqueous medium in the presence of hydrogen peroxide. Russ Chem Bull 53:318–324CrossRefGoogle Scholar
  10. Brackhagen M, Heinze T, Dorn S, Koschella A (2007) Verfahren zur Herstellung aminogruppenhaltiger Cellulosederivate in ionischer Flüssigkeit. EP Patent 2072530A1Google Scholar
  11. Bragd PL, Van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66CrossRefGoogle Scholar
  12. Brewster JH, Ciotti CJ Jr (1955) Dehydrations with aromatic sulfonyl halides in pyridine. A convenient method for the preparation of esters. J Am Chem Soc 77:6214–6215CrossRefGoogle Scholar
  13. Butrim SM, Bil’dyukevich TD, Butrim NS, Yurkshtovich TL (2007) Structural modification of potato starch by solutions of nitrogen (IV) oxide in CCl4. Chem Nat Compd 43:302–305CrossRefGoogle Scholar
  14. Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99–107CrossRefGoogle Scholar
  15. Calvini P, Gorassini A, Luciano G, Franceschi E (2006) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40:177–183CrossRefGoogle Scholar
  16. Camacho Gomez JA, Erler UW, Klemm D (1996) O,4-methoxy substituted trityl groups in 6-O protection of cellulose: homogeneous synthesis, characterization, detritylation. Macromol Chem Phys 197:953–964CrossRefGoogle Scholar
  17. Camy S, Montanari S, Rattaz A, Vignon M, Condoret JS (2009) Oxidation of cellulose in pressurized carbon dioxide. J Supercrit Fluids 51:188–196CrossRefGoogle Scholar
  18. Cao Y, Wu J, Meng T, Zhang J, He JS, Li HQ, Zhang Y (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym 69:665–672CrossRefGoogle Scholar
  19. Cato Y, Kaminaga J, Matsuo R, Isogai A (2004) TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym 58:421–426CrossRefGoogle Scholar
  20. Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15:819–830CrossRefGoogle Scholar
  21. Ciacco GT, Liebert TF, Frollini E, Heinze TJ (2003) Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of Sisal cellulose. Cellulose 10:125–132CrossRefGoogle Scholar
  22. Coseri S (2009) Phthalimide-N-oxyl (PINO) radical, a powerful catalytic agent: its generation and versatility towards various organic substrates. Cat Rev 51:218–292CrossRefGoogle Scholar
  23. Coseri S, Mendenhall GD, Ingold KU (2005) Mechanisms of reactions of aminoxyl (nitroxide), iminoxyl, and imidoxyl radicals with alkenes and evidence that in the presence of lead tetraacetate, N-hydroxyphthalimide reacts with alkenes by both radical and nonradical mechanisms. J Org Chem 70:4629–4636PubMedCrossRefGoogle Scholar
  24. Coseri S, Nistor G, Fras L, Strnad S, Harabagiu V, Simionescu BC (2009) Mild and selective oxidation of cellulose fibers in the presence of N-hydroxyphthalimide. Biomacromolecules 10:2294–2299PubMedCrossRefGoogle Scholar
  25. Danaee I, Jafarian M, Mirzapoor A, Gobal F, Mahjani MG (2010) Electrooxidation of methanol on NiMn alloy modified graphite electrode. Electrochim Acta 55:2093–2100CrossRefGoogle Scholar
  26. Davis NJ, Flitsch SL (1993) Selective oxidation of monosaccharide derivatives to uronic acids. Tetrahedron Lett 34:1181–1184CrossRefGoogle Scholar
  27. De Nooy AEJ, Besemer AC, Van Bekkum H (1994) Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pays Bas 113:165–166CrossRefGoogle Scholar
  28. De Nooy AEJ, Besemer AC, Van Beckum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98CrossRefGoogle Scholar
  29. Deus C, Friebolin H, Siefert E (1991) Partiell acetylierte Cellulose-Synthese und Bestimmung der Substituentenverteilung mit Hilfe der 1 H NMR Spektroskopie. Makromol Chem 192:75–83CrossRefGoogle Scholar
  30. Dias GJ, Peplow PV, Teixeira F (2003) Osseous regeneration in the presence of oxidized cellulose and collagen. J Mater Sci Mater Med 14:739–745PubMedCrossRefGoogle Scholar
  31. Dorn S, Schöbitz M, Schlufter K, Heinze T (2010a) Novel cellulose products prepared by homogeneous functionalization of cellulose in ionic liquids. ACS Symp Ser 1033:275–285CrossRefGoogle Scholar
  32. Dorn S, Pfeifer A, Schlufter K, Heinze T (2010b) Synthesis of water-soluble cellulose esters applying carboxylic acid imidazolides. Polym Bull 64:845–854CrossRefGoogle Scholar
  33. Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128CrossRefGoogle Scholar
  34. Edgar KJ, Pecorini TJ, Glasser WG (1998) Long-chain cellulose esters: preparation, properties, and perspective. In: Heinze T, Glasser WG (eds) Cellulose derivatives; modification, characterization and nanostructures. ACS Symposium Series 688, American Chemical Society, Washington, DC, p 38Google Scholar
  35. El Seoud OA, Heinze T (2005) Organic esters of cellulose: New perspectives for old polymers. In: Heinze T (ed) Advances in polymer science: polysaccharides I, structure, characterization and use, vol 186. Springer, Heidelberg, p 103ffGoogle Scholar
  36. El Seoud OA, Marson GA, Ciacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201:882–889CrossRefGoogle Scholar
  37. Fenn D, Heinze T (2009) Novel 3-mono-O-hydroxyethyl cellulose: synthesis and structure characterization. Cellulose 16:853–861CrossRefGoogle Scholar
  38. Fenn D, Pfeifer A, Heinze T (2007) Studies on the synthesis of 2,6-di-O-thexyldimethylsilyl cellulose. Cell Chem Technol 41:87–91Google Scholar
  39. Fenn D, Pohl M, Heinze M (2009) Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. React Funct Polym 69:347–352CrossRefGoogle Scholar
  40. Fenselau AH, Moffatt JG (1966) Sulfoxide-carbodiimide reactions. III. Mechanism of the oxidation reaction. J Am Chem Soc 88:1762–1765CrossRefGoogle Scholar
  41. Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloid Surf A 260:101–108CrossRefGoogle Scholar
  42. Galgut PN (1990) Oxidized cellulose mesh: I. Biodegradable membrane in periodontal surgery. Biomaterials 11:561–564PubMedCrossRefGoogle Scholar
  43. Gericke M, Liebert T, Heinze T (2009a) Interaction of ionic liquids with polysaccharides – 8. Synthesis of cellulose sulfate suitable for symplex formation. Macromol Biosci 9:343–353PubMedCrossRefGoogle Scholar
  44. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009b) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194PubMedCrossRefGoogle Scholar
  45. Gericke M, Liebert T, Heinze T (2009c) Polyelectrolyte complex formation in ionic liquids. J Am Chem Soc 131:13220–13221PubMedCrossRefGoogle Scholar
  46. Glasser WG, Samaranayake G, Dumay M, Dave VJ (1995) Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid. J Polym Sci B Polym Phys 33:2045–2054CrossRefGoogle Scholar
  47. Glasser WG, Becker U, Todd JG (2000) Novel cellulose derivatives. VI. Preparation and thermal analysis of two novel cellulose esters with fluorine-containing substituents. Carbohydr Polym 42:393–400CrossRefGoogle Scholar
  48. Gomez-Bujedo S, Fleury E, Vignon MR (2004) Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate. Biomacromolecules 5:565–571PubMedCrossRefGoogle Scholar
  49. Gräbner D, Liebert T, Heinze T (2002) Synthesis of novel adamantoyl cellulose using differently activated carbonic acid derivatives. Cellulose 9:193–201CrossRefGoogle Scholar
  50. Graenacher C (1934) Cellulose solution. US Patent 1943176Google Scholar
  51. Guthrie JD (1971) Ion-exchange celluloses. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives. Wiley-Interscience, New YorkGoogle Scholar
  52. Haslam E (1980) Recent developments in methods for the esterification and protection of the carboxyl group. Tetrahedron 36:2409–2433CrossRefGoogle Scholar
  53. Hassan ML (2006) Preparation and thermal stability of new cellulose-based poly(propylene imine) and poly(amido amine) hyperbranched derivatives. J Appl Polym Sci 101:2079–2087CrossRefGoogle Scholar
  54. Hassan ML, Moorefield CN, Newkome GR (2004) Regioselective dendritic functionalization of cellulose. Macromol Rapid Commun 25:1999–2002CrossRefGoogle Scholar
  55. Hassan ML, Moorefield CN, Kotta KK, Newkome GR (2005) Regioselective combinatorial-type synthesis, characterization, and physical properties of dendronized cellulose. Polymer 46:8947–8955CrossRefGoogle Scholar
  56. Heinze T, Glasser WG (1998) The role of novel solvents and solution complexes for the preparation of highly engineered cellulose derivatives. In: Heinze T, Glasser WG (eds) Cellulose derivatives, modification, characterisation and nanostructures. ACS Symposium series (688), p 2Google Scholar
  57. Heinze T, Köhler S (2010) Dimethyl sulfoxide and ammonium fluorides – novel cellulose solvents. ACS Symp Ser 1033:103–118CrossRefGoogle Scholar
  58. Heinze T, Koschella A (2008) Water-soluble 3-O-methoxyethyl cellulose: synthesis and characterization. Carbohydr Res 343:668–673PubMedCrossRefGoogle Scholar
  59. Heinze T, Schaller J (2000) New water soluble cellulose esters synthesized by an effective acylation procedure. Macromol Chem Phys 201:1214–1218CrossRefGoogle Scholar
  60. Heinze T, Röttig K, Nehls I (1994) Synthesis of 2,3-O-carboxymethylcellulose. Macromol Rapid Commun 15:311–317CrossRefGoogle Scholar
  61. Heinze U, Heinze T, Klemm D (1999) Synthesis and structure characterization of 2,3-O-carboxymethylcellulose. Macromol Chem Phys 200:896–902CrossRefGoogle Scholar
  62. Heinze T, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W (2000a) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631CrossRefGoogle Scholar
  63. Heinze T, Vieira M, Heinze U (2000b) New polymers based on cellulose. Lenzinger Ber 79:39–44Google Scholar
  64. Heinze T, Liebert T, Pfeiffer K, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization, and structure property relations. Cellulose 10:283–296CrossRefGoogle Scholar
  65. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525PubMedCrossRefGoogle Scholar
  66. Heinze T, Koschella A, Brackhagen M, Engelhardt J, Nachtkamp K (2006) Studies on non-natural deoxyammonium cellulose. Macromol Symp 244:74–82CrossRefGoogle Scholar
  67. Heinze T, Pohl M, Schaller M, Meister F (2007) Novel bulky esters of cellulose. Macromol Biosci 7:1225–1231PubMedCrossRefGoogle Scholar
  68. Heinze T, Schöbitz M, Pohl M, Meister F (2008a) Interactions of ionic liquids with polysaccharides: IV. Dendronization of 6-azido-6-deoxy cellulose. J Polym Sci A Polym Chem 46:3853–3859CrossRefGoogle Scholar
  69. Heinze T, Pfeifer A, Petzold K (2008b) Regioselective reaction of cellulose with tert-butyldimethylsilyl chloride in N,N-dimethyl acetamide/LiCl. BioResources 3:79–90Google Scholar
  70. Heinze T, Pfeifer A, Sarbova V, Koschella A (2011) 3-O-Propyl cellulose: cellulose ether with exceptionally low flocculation temperature. Polym Bull 66:1219–1229CrossRefGoogle Scholar
  71. Hirota M, Tamura N, Saito T, Isogai A (2009a) Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 78:330–335CrossRefGoogle Scholar
  72. Hirota M, Tamura N, Saito T, Isogai A (2009b) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 16:841–851CrossRefGoogle Scholar
  73. Hirrien M, Chevillard C, Desbrieres J, Axelos MAV, Rinaudo M (1998) Thermogelation of methylcelluloses: new evidence for understanding the gelation mechanism. Polymer 39:6251–6259CrossRefGoogle Scholar
  74. Hon DN, Yan HJ (2001) Cellulose furoate. I. Synthesis in homogeneous and heterogeneous systems. J Appl Polym Sci 81:2649–2655CrossRefGoogle Scholar
  75. Huang K, Xia J, Li M, Lian J, Yang X, Lin G (2011) Homogeneous synthesis of cellulose stearates with different degrees of substitution in ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 83:1631–1635CrossRefGoogle Scholar
  76. Husemann E, Siefert E (1969) N-äthyl-pyridinium-chlorid als Lösungsmittel und Reaktionsmedium für Cellulose. Makromol Chem 128:288–291CrossRefGoogle Scholar
  77. Hussain MA, Liebert T, Heinze T (2004a) Acylation of cellulose with N,N’ -carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25:916–920CrossRefGoogle Scholar
  78. Hussain MA, Liebert T, Heinze T (2004b) First report on a new esterification method for cellulose. Polym News 29:14–17CrossRefGoogle Scholar
  79. Ibrahim AA, Nada AMA, Hagemann U, El Seoud OA (1996) Preparation of dissolving pulp from sugar cane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50:221–225CrossRefGoogle Scholar
  80. Illy N (2006) Diploma Thesis, Friedrich Schiller University of JenaGoogle Scholar
  81. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  82. Isogai T, Saito T, Isogai A (2010) TEMPO electromediated of some polysaccharides including regenerated cellulose fiber. Biomacromolecules 11:1593–1599PubMedCrossRefGoogle Scholar
  83. Itagaki H, Tokai M, Kondo T (1997) Physical gelation process for cellulose whose hydroxyl groups are regioselectively substituted by fluorescent groups. Polymer 38:4201–4205CrossRefGoogle Scholar
  84. Iwata T, Azuma J, Okamura K, Muramoto M, Chun B (1992) Preparation and n.m.r. assignments of cellulose mixed esters regioselectively substituted by acetyl and propanoyl groups. Carbohydr Res 224:277–283CrossRefGoogle Scholar
  85. Jin B, Wu W (2005) Compositions for veterinary and medical applications. WO Patent 2005020997Google Scholar
  86. Johansson EE, Lind J (2005) Free radical mediated cellulose degradation during high consistency ozonation. J Wood Chem Technol 25:171–186CrossRefGoogle Scholar
  87. Just EK, Majewicz TG (1985) Cellulose ethers. In: Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI (eds) Encyclopedia of polymer science and engineering (2nd ed). Wiley, New York, p III/226ffGoogle Scholar
  88. Kadla JF, Asfour FH, Bar-Nir B (2007) Micropatterned thin film honeycomb materials from regiospecifically modified cellulose. Biomacromolecules 8:161–165PubMedCrossRefGoogle Scholar
  89. Kamitakahara H, Koschella A, Mikawa Y, Nakatsubo F, Heinze T, Klemm D (2008) Syntheses and comparison of 2,6-Di-O-methyl celluloses from natural and synthetic celluloses. Macromol Biosci 8:690–700PubMedCrossRefGoogle Scholar
  90. Kato T, Miyagawa A, Carmelita M, Kasuya Z, Hatanaka K (2009) Development of membrane filter with oligosaccharide immobilized by click chemistry for influenza virus adsorption. Open Chem Biomed Methods J 2:13–17CrossRefGoogle Scholar
  91. Katritzky AR, Zhang Y, Singh SK (2003) Efficient conversion of carboxylic acids into N-acylbenzotriazoles. Synthesis 18:2795–2798CrossRefGoogle Scholar
  92. Katritzky AR, Cai C, Singh SK (2006) Efficient microwave access to polysubstituted amidines from imidoylbenzotriazoles. J Org Chem 71:3375–3380PubMedCrossRefGoogle Scholar
  93. Kern H, Choi S, Wenz G, Heinrich J, Erhardt L, Mischnik P, Garidel P, Blume A (2000) Synthesis, control of substitution pattern and phase transitions of 2,3-di-O-methylcellulose. Carbohydr Res 326:67–79PubMedCrossRefGoogle Scholar
  94. Kitaoka T, Isogai A, Onabe F (1999) Chemical modification of pulp fibers by TEMPO-mediated oxidation. Nord Pulp Pap Res J 14:279–284CrossRefGoogle Scholar
  95. Klemm D, Stein A (1995) Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. J Macromol Sci A Pure Appl Chem A32:899–904Google Scholar
  96. Klemm D, Schnabelrauch M, Stein A, Philipp B, Wagenknecht W, Nehls I (1990) Recent results from homogeneous esterification of cellulose using soluble intermediate compounds. Das Papier 44:624–632Google Scholar
  97. Klemm D, Philip B, Heinze T, Heinze U, Wagenknecht W (1998) Cellulose sulfates. In: Comprehensive cellulose chemistry, vol 2, Wiley VCH, New York, pp 115–133Google Scholar
  98. Klohr EA, Koch W, Klemm D, Dicke R (2000) Regioselektiv substituierte Ester von Oligo- und Polysacchariden und Verfahren zu ihrer Herstellung. DE Patent 19951734, CAN Patent 133:224521Google Scholar
  99. Köhler S, Heinze T (2007) Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose 14:489–495CrossRefGoogle Scholar
  100. Köhler S, Liebert T, Schöbitz M, Schaller J, Meister F, Günther W, Heinze T (2007) Interactions of ionic liquids with polysaccharides - 1: unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rapid Commun 28:2311–2317CrossRefGoogle Scholar
  101. Kolb HC, Finn MG, Sharpless KB (2001) Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angew Chem 113:2056–2075CrossRefGoogle Scholar
  102. Kondo T (1993) Preparation of 6-O-alkylcelluloses. Carbohydr Res 238:231–240CrossRefGoogle Scholar
  103. Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci B Polym Phys 35:717–723CrossRefGoogle Scholar
  104. Kondo T, Gray DG (1991) The preparation of O-methyl- and O-ethyl-celluloses having controlled distribution of substituents. Carbohydr Res 220:173–183CrossRefGoogle Scholar
  105. Kondo T, Sawatari C, Manley R, St J, Gray DG (1994) Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27:210–215CrossRefGoogle Scholar
  106. Kondo T, Koschella A, Heublein B, Klemm D, Heinze T (2008) Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose. Carbohydr Res 343:2600–2604PubMedCrossRefGoogle Scholar
  107. Koschella A, Klemm D (1997) Silylation of cellulose regiocontrolled by bulky reagents and dispersity in the reaction media. Macromol Symp 120:115–125CrossRefGoogle Scholar
  108. Koschella A, Haucke G, Heinze T (1997) New fluorescence active cellulosics prepared by a convenient acylation reaction. Polym Bull 39:597–604CrossRefGoogle Scholar
  109. Koschella A, Heinze T, Klemm D (2001) First synthesis of 3-O-functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose. Macromol Biosci 1:49–54CrossRefGoogle Scholar
  110. Koschella A, Fenn D, Heinze T (2006) Water soluble 3-mono-O-ethyl cellulose: synthesis and characterization. Polym Bull 57:33–41CrossRefGoogle Scholar
  111. Koschella A, Richter M, Heinze T (2010) Novel cellulose-based polyelectrolytes synthesized via click reaction. Carbohydr Res 345:1028–1033PubMedCrossRefGoogle Scholar
  112. Kostic M, Potthast A, Rosenau T, Kosma P, Sixta H (2006) A novel approach to determination of carbonyl groups in DMAc/LiCl-insoluble pulps by fluorescence labeling. Cellulose 13:429–435CrossRefGoogle Scholar
  113. Liebert T, Heinze T (2005) Tailored cellulose esters: synthesis and structure determination. Biomacromolecules 6:333–340PubMedCrossRefGoogle Scholar
  114. Liebert T, Hänsch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27:208–213CrossRefGoogle Scholar
  115. Liu H-Q, Zhang L-N, Takaragi A, Miyamoto T (1997) Water solubility of regioselectively 2,3-O-substituted carboxymethylcellulose. Macromol Rapid Commun 18:921–925CrossRefGoogle Scholar
  116. Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Geng ZC (2006) Structural and thermal characterization of sugarcane bagasse cellulose succinates prepared in ionic liquid. Polym Degrad Stabil 91:3040–3047CrossRefGoogle Scholar
  117. Liu CF, Sun RC, Zhang AP, Qin M-H, Ren J-L, Wang X-A (2007a) Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts. Agricult Food Chem 55:2399–2406CrossRefGoogle Scholar
  118. Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chaod ZN, Luod W (2007b) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res 342:919–926PubMedCrossRefGoogle Scholar
  119. Manhas MS, Mohammed F, Khan Z (2007) A kinetic study of oxidation of β-cyclodextrin by permanganate in aqueous media. Colloid Surf 295:165–171CrossRefGoogle Scholar
  120. McCormick CL, Callais PA (1987) Derivatization of cellulose in lithium chloride and N-N-dimethylacetamide solutions. Polymer 28:2317–2323CrossRefGoogle Scholar
  121. McCormick CL, Lichatowich DK (1979) Homogeneous solution reactions of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide systems. J Polym Sci C Polym Lett 17:479–484Google Scholar
  122. Nagel MCV, Heinze T (2010) Esterification of cellulose with acyl-1 H-benzotriazole. Polym Bull 65:873–881CrossRefGoogle Scholar
  123. Nojiri M, Kondo T (1996) Application of regioselectively substituted methylcelluloses to characterize the reaction mechanism of cellulase. Macromolecules 29:2392–2395CrossRefGoogle Scholar
  124. Östmark E, Lindqvist J, Nyström D, Malmström E (2007) Dendronized hydroxypropyl cellulose – synthesis and characterization of biobased nanoobjects. Biomacromolecules 8:3815–3822PubMedCrossRefGoogle Scholar
  125. Painter TJ (1977) Preparation and periodate oxidation of C-6-oxycellulose: conformational interpretation of hemiacetal stability. Carbohydr Res 55:95–103CrossRefGoogle Scholar
  126. Pameijer CH, Jensen S (2007) Agents and devices for providing blood clotting functions to wounds. US Patent 20070190110Google Scholar
  127. Pawlowski WP, Sankar SS, Gilbert RD, Fornes RD (1987) Synthesis and solid state 13C-NMR studies of some cellulose derivatives. J Polym Sci A Polym Chem 25:3355–3362CrossRefGoogle Scholar
  128. Petzold K, Klemm D, Heublein B, Burchard W, Savin G (2004) Investigations on structure of regioselectively functionalized celluloses in solution exemplified by using 3-O-alkyl ethers and light scattering. Cellulose 11:177–193CrossRefGoogle Scholar
  129. Philipp B, Wagenknecht W, Wagenknecht M, Nehls I, Klemm D, Stein A, Heinze T, Heinze U, Helbig K (1995) Regioselective esterification and etherification of cellulose and cellulose derivatives. 1. Problems and description of the reaction systems. Das Papier 49:3–7Google Scholar
  130. Pohl M, Heinze T (2008) Novel biopolymer structures synthesized by dendronization of 6-deoxy-6-aminopropargyl cellulose. Macromol Rapid Commun 29:1739–1745CrossRefGoogle Scholar
  131. Pohl M, Schaller J, Meister F, Heinze T (2008a) Novel bulky esters of biopolymers: dendritic cellulose. Macromol Symp 262:119–128CrossRefGoogle Scholar
  132. Pohl M, Schaller J, Meister F, Heinze T (2008b) Selectively dendronized cellulose: synthesis and characterization. Macromol Rapid Commun 29:142–148CrossRefGoogle Scholar
  133. Pohl M, Morris GA, Harding SE, Heinze T (2009a) Studies on the molecular flexibility of novel dendronized carboxymethyl cellulose derivatives. Eur Polym J 45:1098–1110CrossRefGoogle Scholar
  134. Pohl M, Michaelis N, Meister F, Heinze T (2009b) Biofunctional surfaces based on dendronized cellulose. Biomacromolecules 10:382–389PubMedCrossRefGoogle Scholar
  135. Potthast A, Rohrling J, Rosenau T, Borgards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3 Monitoring oxidative processes. Biomacromolecules 4:743–749PubMedCrossRefGoogle Scholar
  136. Regiani AM, Frollini E, Marson GA, Arantes GM, El Seoud OA (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci A Polym Chem 37:1357–1363CrossRefGoogle Scholar
  137. Ringot C, Sol V, Granet R, Krausz P (2009) Porphyrin-grafted cellulose fabric: new photobactericidal material obtained by “Click-Chemistry” reaction. Mater Lett 63:1889–1891CrossRefGoogle Scholar
  138. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989PubMedCrossRefGoogle Scholar
  139. Samaranayake G, Glasser WG (1993) Cellulose derivatives with low DS. I. A novel acylation system. Carbohydr Polym 22:1–7CrossRefGoogle Scholar
  140. Schaller J, Heinze T (2005) Studies on the synthesis of 2,3-O-hydroxyalkyl ethers of cellulose. Macromol Biosci 5:58–63PubMedCrossRefGoogle Scholar
  141. Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27:1670–1676CrossRefGoogle Scholar
  142. Schumann K, Pfeifer A, Heinze T (2009) Novel cellulose ethers: synthesis and structure characterization of 3-mono-o-(3’ -hydroxypropyl) cellulose. Macromol Symp 280:86–94CrossRefGoogle Scholar
  143. Schweiger RG (1972) Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydr Res 21:219–228CrossRefGoogle Scholar
  144. Sealey JE, Samaranayake G, Todd JG, Glasser WG (1996) Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci B Polym Phys 34:1613–1620CrossRefGoogle Scholar
  145. Sealey JE, Frazier CE, Samaranayake G, Glasser WG (2000) Novel cellulose derivatives. V. Synthesis and thermal properties of esters with trifluoroethoxy acetic acid. J Polym Sci B Polym Phys 38:486–494CrossRefGoogle Scholar
  146. Sharma JB, Malhotra M (2003) Topical oxidized cellulose for tubal hemorrhage hemostasis during laparoscopic sterilization. Int J Gynecol Obstet 82:221–222CrossRefGoogle Scholar
  147. Sharma JB, Malhotra M, Pundir P (2003) Laparoscopic oxidized cellulose (Surgicel) application for small uterine perforations. Int J Gynecol Obstet 83:271–275CrossRefGoogle Scholar
  148. Shimizu Y, Hayashi J (1988) A new method for cellulose acetylation with acetic acid. Sen-i Gakkaishi 44:451–456CrossRefGoogle Scholar
  149. Shimizu Y, Nakayama A, Hayashi J (1991) Acetylation of cellulose with carboxylate salts. Cell Chem Technol 25:275–281Google Scholar
  150. Staab HA (1962) Neuere Methoden der präperativen organischen Chemie IV Synthesen mit heterocyclischen Amiden (Azoliden). Angew Chem 74:407–423CrossRefGoogle Scholar
  151. Stadler PA (1978) Eine einfache Veresterungsmethode im Eintopf-Verfahren. Helv Chim Acta 61:1675–1681CrossRefGoogle Scholar
  152. Sun H, DiMagno SG (2005) Anhydrous tetrabutylammonium fluoride. J Am Chem Soc 127:2050–2051PubMedCrossRefGoogle Scholar
  153. Sun S, Foster TJ, MacNaughtan W, Mitchell JR, Fenn D, Koschella A, Heinze T (2009) Self-association of cellulose ethers with random and regioselective distribution of substitution. J Polym Sci B Polym Phys 47:1743–1752CrossRefGoogle Scholar
  154. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975PubMedCrossRefGoogle Scholar
  155. Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7:177–188CrossRefGoogle Scholar
  156. Takaragi A, Minoda M, Miyamoto T, Liu HQ, Zhang LN (1999) Reaction characteristics of cellulose in the LiCl/1,3-dimethyl-2-imidazolidinone solvent system. Cellulose 6:93–102CrossRefGoogle Scholar
  157. Terbojevich M, Cosani A, Focher B, Gastaldi G, Wu W, Marsano E, Conio G (1999) Solution properties and mesophase formation of 4-phenyl-benzoylcellulose. Cellulose 6:71–87CrossRefGoogle Scholar
  158. Wagenknecht W (1996) Regioselectively substituted cellulose derivatives by modification of commercial cellulose acetates. Das Papier 50:712–720Google Scholar
  159. Wagenknecht W, Phillip B, Keck M (1985) Zur Acylierung von Cellulose nach Auflösung in O-basischen Lösemittelsysteme. Acta Polym 36:697–698CrossRefGoogle Scholar
  160. Wang Z-M, Li L, Xiao K-J, Wu J-Y (2009) Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity. Bioresour Technol 4:1687–1690CrossRefGoogle Scholar
  161. Williamson SL, McCormick CL (1998) Cellulose derivatives synthesized via isocyanate and activated ester pathways in homogeneous solutions of lithium chloride N,N-dimethylacetamide. J Macromol Sci A Pure Appl Chem A35:1915–1927Google Scholar
  162. Wiseman DM, Saferstein L, Wolf S (2002) Bioresorbable oxidized cellulose composite material for prevention of postsurgical adhesions. US Patent 6500777Google Scholar
  163. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268PubMedCrossRefGoogle Scholar
  164. Yoshida Y, Yanagisawa M, Isogai A, Suguri N, Sumikawa N (2005) Preparation of polymer brush-type cellulose β-ketoesters using LiCl/1,3-dimethyl-2-imidazolidinone as a solvent. Polymer 46:2548–2557CrossRefGoogle Scholar
  165. Zhang C, Daly WH (2005) Synthesis and characterization of a trifunctional amidoamine cellulose derivative. Polymer Prepr 46:707–710Google Scholar
  166. Zhang ZB, McCormick CL (1997) Structopendant unsaturated cellulose esters via acylation in homogeneous lithium chloride/N, N-dimethylacetamide solutions. J Appl Polym Sci 66:293–305CrossRefGoogle Scholar
  167. Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRefGoogle Scholar
  168. Zhang C, Price LM, Daly HD (2006) Synthesis and Characterization of a trifunctional amidoamine cellulose derivative. Biomacromolecules 7:139–145PubMedCrossRefGoogle Scholar
  169. Zhang J, Wu J, Cao Y, Sang S, Zhang J, He J (2009a) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308CrossRefGoogle Scholar
  170. Zhang Y, Zhang L, Shuang S, Feng F, Qiao J, Guo Y, Choi MMF, Dong C (2010) Electro-oxidation of methane on roughened palladium electrode in acidic electrolytes at ambient temperatures. Anal Lett 43:1055–1065CrossRefGoogle Scholar
  171. Zhao GL, Hafren J, Deiana L, Cordova A (2010) Heterogeneous “Organoclick” Derivatization of Polysaccharides: Photochemical Thiol-ene Click Modification of Solid Cellulose. Macromol Rapid Commun 31:740–744PubMedCrossRefGoogle Scholar
  172. Zimnitski DS, Yurkshtovich TL, Bychkovsky PM (2004) Synthesis and characterization of oxidized cellulose. J Polym Sci A Polym Chem 42:4785–4791CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Thomas Heinze
    • 1
    Email author
  • Andreas Koschella
    • 2
  • Tim Liebert
    • 3
  • Valeria Harabagiu
    • 4
  • Sergio Coseri
    • 4
  1. 1.Center of Excellence for Polysaccharide Research, Institute for Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaJenaGermany
  2. 2.Center of Excellence for Polysaccharide Research, Institute for Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaJenaGermany
  3. 3.Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaJenaGermany
  4. 4.Petru Poni Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations