Microscale Biomaterials for Tissue Engineering

  • Ian Wheeldon
  • Javier Fernandez
  • Hojae Bae
  • Hirokazu Kaji
  • Ali KhademhosseiniEmail author


Microscale and high throughput technologies are powerful tools for addressing many of the challenges in the field of tissue engineering. In this chapter, we present an overview of these technologies and their applications in controlling the cellular microenviroment for tissue engineering applications. We focus on concepts and techniques that can be used to create two- and three-dimensional tissue engineering substrates and scaffolds. Common to these techniques is the ability to control one or more aspects of the cellular microenvironment, including chemical and mechanical cues, cell–cell, cell–matrix, and cell-soluble factor interactions. We also discuss recent developments in high throughput techniques that are used to explore the vast number of combinations of factors that comprise the cellular microenvironment.


Cellular microenvironment High throughput arrays Microfabrication Stem cells 



This chapter was supported by the National Institutes of Health (EB007249; DE019024; HL092836), National Science Foundation (DMR0847287), the institute for Soldier Nanotechnology, and the US Army Corps of Engineers. H.K. acknowledges support from JSPS Fellowship for Research Abroad.


  1. 1.
    Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–926.Google Scholar
  2. 2.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology 2005;23(1):47–55.Google Scholar
  3. 3.
    Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America 2006;103(8):2480–2487.Google Scholar
  4. 4.
    Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE. Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering 2001;3:335–373.Google Scholar
  5. 5.
    Moeller HC, Mian MK, Shrivastava S, Chung BG, Khademhosseini A. A microwell array system for stem cell culture. Biomaterials 2008;29(6):752–763.Google Scholar
  6. 6.
    Karp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh KY, et al. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab on a Chip 2007;7(6):786–794.Google Scholar
  7. 7.
    Ostuni E, Chen CS, Ingber DE, Whitesides GM. Selective deposition of proteins and cells in arrays of microwells. Langmuir 2001;17(9):2828–2834.Google Scholar
  8. 8.
    Ostuni E, Yan L, Whitesides GM. The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloids and Surfaces. B, Biointerfaces 1999;15(1):3–30.Google Scholar
  9. 9.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials 1999;20(23–24):2363–2376.Google Scholar
  10. 10.
    Jinno S, Moeller HC, Chen CL, Rajalingam B, Chung BG, Dokmeci MR, et al. Macrofabricated multilayer parylene-C stencils for the generation of patterned dynamic co-cultures. Journal of Biomedical Materials Research. Part A 2008;86A(1):278–288.Google Scholar
  11. 11.
    Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, et al. A cell-laden microfluidic hydrogel. Lab on a Chip 2007;7(6):756–762.Google Scholar
  12. 12.
    Dertinger SKW, Jiang XY, Li ZY, Murthy VN, Whitesides GM. Gradients of substrate-bound laminin orient axonal specification of neurons. Proceedings of the National Academy of Sciences of the United States of America 2002;99(20):12542–12547.Google Scholar
  13. 13.
    Park JH, Chung BG, Lee WG, Kim J, Brigham MD, Shim J, et al. Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnology and Bioengineering 2010; 106(1):138–148Google Scholar
  14. 14.
    Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR. High throughput methods applied in biomaterial development and discovery. Biomaterials 2010;31(2):187–198.Google Scholar
  15. 15.
    Peters A, Brey DM, Burdick JA. High-throughput and combinatorial technologies for tissue engineering applications. Tissue Engineering. Part B: Reviews 2009;15(3):225–239.Google Scholar
  16. 16.
    Anderson DG, Levenberg S, Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnology 2004;22(7):863–866.Google Scholar
  17. 17.
    Flaim CJ, Chien S, Bhatia SN. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2005;2(2):119–125.Google Scholar
  18. 18.
    Flaim CJ, Teng D, Chien S, Bhatia SN. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells and Development 2008;17(1):29–39.Google Scholar
  19. 19.
    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell–matrix adhesions to the third dimension. Science 2001;294(5547):1708–1712.Google Scholar
  20. 20.
    Doyle AD, Wang FW, Matsumoto K, Yamada KM. One-dimensional topography underlies three-dimensional fibrillar cell migration. The Journal of Cell Biology 2009;184(4):481–490.Google Scholar
  21. 21.
    Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005;310(5751):1135–1138.Google Scholar
  22. 22.
    Blawas AS, Reichert WM. Protein patterning. Biomaterials 1998;19(7–9):595–609.Google Scholar
  23. 23.
    Barbulovic-Nad I, Lucente M, Sun Y, Zhang MJ, Wheeler AR, Bussmann M. Bio-microarray fabrication techniques – a review. Critical Reviews in Biotechnology 2006;26(4):237–259.Google Scholar
  24. 24.
    Bertone P, Snyder M. Advances in functional protein microarray technology. 15th Biennial Conference on Methods in Protein Structure Analysis; 2004 Aug 29–Sep 02; Seattle, WA: Blackwell Publishing; 2004. p. 5400–5411.Google Scholar
  25. 25.
    Xia YN, Whitesides GM. Soft lithography. Angewandte Chemie (International edition) 1998;37(5):551–575.Google Scholar
  26. 26.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM. Laminar flows – subcellular positioning of small molecules. Nature 2001;411(6841):1016.Google Scholar
  27. 27.
    Takayama S, Ostuni E, Qian XP, McDonald JC, Jiang XY, LeDuc P, et al. Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries. Advanced Materials 2001;13(8):570–574.Google Scholar
  28. 28.
    Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, et al. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab on a Chip 2005;5(12):1380–1386.Google Scholar
  29. 29.
    Rhee SW, Taylor AM, Tu CH, Cribbs DH, Cotman CW, Jeon NL. Patterned cell culture inside microfluidic devices. Lab on a Chip 2005;5(1):102–107.Google Scholar
  30. 30.
    Khademhosseini A, Bettinger C, Karp JM, Yeh J, Ling YB, Borenstein J, et al. Interplay of biomaterials and micro-scale technologies for advancing biomedical applications. Journal of Biomaterials Science, Polymer Edition 2006;17(11):1221–1240.Google Scholar
  31. 31.
    Khetani SR, Bhatia SN. Engineering tissues for in vitro applications. Current Opinion in Biotechnology 2006;17(5):524–531.Google Scholar
  32. 32.
    Micheletti M, Lye GJ. Microscalle bioprocess optimisation. Current Opinion in Biotechnology 2006;17(6):611–618.Google Scholar
  33. 33.
    Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM. Bioreactor design for tissue engineering. Journal of Bioscience and Bioengineering 2005;100(3):235–245.Google Scholar
  34. 34.
    Auburn RP, Kreil DP, Meadows LA, Fischer B, Matilla SS, Russell S. Robotic spotting of cDNA and oligonucleotide microarrays. Trends in Biotechnology 2005;23(7):374–379.Google Scholar
  35. 35.
    MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000;289(5485):1760–1763.Google Scholar
  36. 36.
    Mirzabekov A, Kolchinsky A. Emerging array-based technologies in proteomics. Current Opinion in Chemical Biology 2002;6(1):70–75.Google Scholar
  37. 37.
    Rusmini F, Zhong ZY, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules 2007;8(6):1775–1789.Google Scholar
  38. 38.
    Wilson DS, Nock S. Functional protein microarrays. Current Opinion in Chemical Biology 2002;6(1):81–85.Google Scholar
  39. 39.
    Lee MY, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS. Three-dimensional cellular microarray for high-throughput toxicology assays. Proceedings of the National Academy of Sciences of the United States of America 2008;105(1):59–63.Google Scholar
  40. 40.
    Xu F, et al. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication 2010;2(1):014105.Google Scholar
  41. 41.
    Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. Journal of Biomechanical Engineering-Transactions on ASME 2009;131(11):8.Google Scholar
  42. 42.
    Lannutti J, Reneker D, Ma T, Tomasko D, Farson DF. Electrospinning for tissue engineering scaffolds. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2007;27(3):504–509.Google Scholar
  43. 43.
    Chen GP, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromolecular Bioscience 2002;2(2):67–77.Google Scholar
  44. 44.
    Quist AP, Pavlovic E, Oscarsson S. Recent advances in microcontact printing. Analytical and Bioanalytical Chemistry 2005;381(3):591–600.Google Scholar
  45. 45.
    Perl A, Reinhoudt DN, Huskens J. Microcontact printing: limitations and achievements. Advanced Materials 2009;21(22):2257–2268.Google Scholar
  46. 46.
    Hammond PT. Form and function in multilayer assembly: new applications at the nanoscale. Advanced Materials 2004;16(15):1271–1293.Google Scholar
  47. 47.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276(5317):1425–1428.Google Scholar
  48. 48.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell 2004;6(4):483–495.Google Scholar
  49. 49.
    Alford PW, Feinberg AW, Sheehy SP, Parker KK. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 2010;31(13):3613–3621.Google Scholar
  50. 50.
    Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proceedings of the National Academy of Sciences of the United States of America 2006;103(52):19771–19776.Google Scholar
  51. 51.
    Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006;27(16):3044–3063.Google Scholar
  52. 52.
    Fink J, Thery M, Azioune A, Dupont R, Chatelain F, Bornens M, et al. Comparative study and improvement of current cell micro-patterning techniques. Lab on a Chip 2007;7(6):672–680.Google Scholar
  53. 53.
    Folch A, Toner M. Microengineering of cellular interactions. Annual Review of Biomedical Engineering 2000;2:227–256.Google Scholar
  54. 54.
    Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, et al. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 2004;25(17):3583–3592.Google Scholar
  55. 55.
    Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng JJ, Farokhzad OC, et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials 2006;27(8):1479–1486.Google Scholar
  56. 56.
    Chien HW, Chang TY, Tsai WB. Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films. Biomaterials 2009;30(12):2209–2218.Google Scholar
  57. 57.
    Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN. Microfabricated platform for studying stem cell fates. Biotechnology and Bioengineering 2004;88(3):399–415.Google Scholar
  58. 58.
    Hwang YS, Chung BG, Ortmann D, Hattori N, Moeller HC, Khademhosseini A. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proceedings of the National Academy of Sciences of the United States of America 2009;106(40):16978–16983.Google Scholar
  59. 59.
    Ochsner M, Dusseiller MR, Grandin HM, Luna-Morris S, Textor M, Vogel V, et al. Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab on a Chip 2007;7(8):1074–1077.Google Scholar
  60. 60.
    Dusseiller MR, Schlaepfer D, Koch M, Kroschewski R, Textor M. An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells. Biomaterials 2005;26(29):5917–5925.Google Scholar
  61. 61.
    Koh WG, Revzin A, Pishko MV. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 2002;18(7):2459–2462.Google Scholar
  62. 62.
    Liu VA, Bhatia SN. Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices 2002;4(4):257–266.Google Scholar
  63. 63.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials 2006;18(11):1345–1360.Google Scholar
  64. 64.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology 2003;21(4):157–161.Google Scholar
  65. 65.
    Zamanian B, Masaeli M, Nichol JW, Khabiry M, Hancock MJ, Bae H, et al. Interface-directed self-assembly of cell-laden microgels. Small 2010;6(8):937–944Google Scholar
  66. 66.
    Du Y, Lo E, Vidula MK, Khabiry M, Khademhosseini A. Method of bottom-up directed assembly of cell-laden microgels. Cellular and Molecular Bioengineering 2008;1(2–3):157–162.Google Scholar
  67. 67.
    Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. The FASEB Journal 2007;21(3):790–801.Google Scholar
  68. 68.
    Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 2005;434(7037):1134–1138.Google Scholar
  69. 69.
    Sawano A, Takayama S, Matsuda M, Miyawaki A. Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Developmental Cell 2002;3(2):245–257.Google Scholar
  70. 70.
    Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological Reviews 2005;85(2):635–678.Google Scholar
  71. 71.
    Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Engineering. Part A 2009;15(2):205–219.Google Scholar
  72. 72.
    Irimia D, Liu SY, Tharp WG, Samadani A, Toner M, Poznansky MC. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab on a Chip 2006;6(2):191–198.Google Scholar
  73. 73.
    Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, et al. Oxygen sensation and social feeding mediated by a C-elegans guanylate cyclase homologue. Nature 2004;430(6997):317–322.Google Scholar
  74. 74.
    Allen JW, Khetani SR, Bhatia SN. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicological Sciences 2005;84(1):110–119.Google Scholar
  75. 75.
    Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000;288(5463):113–116.Google Scholar
  76. 76.
    Hong JW, Studer V, Hang G, Anderson WF, Quake SR. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology 2004;22(4):435–439.Google Scholar
  77. 77.
    Hansen CL, Skordalakes E, Berger JM, Quake SR. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proceedings of the National Academy of Sciences of the United States of America 2002;99(26):16531–16536.Google Scholar
  78. 78.
    Liu J, Enzelberger M, Quake S. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 2002;23(10):1531–1536.Google Scholar
  79. 79.
    Fu AY, Chou HP, Spence C, Arnold FH, Quake SR. An integrated microfabricated cell sorter. Analytical Chemistry 2002;74(11):2451–2457.Google Scholar
  80. 80.
    Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science 2002;298(5593):580–584.Google Scholar
  81. 81.
    Walker GM, Zeringue HC, Beebe DJ. Microenvironment design considerations for cellular scale studies. Lab on a Chip 2004;4(2):91–97.Google Scholar
  82. 82.
    Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends in Biotechnology 2009;27(6):342–349.Google Scholar
  83. 83.
    Hong J, Edel JB, de Mello AJ. Micro- and nanofluidic systems for high-throughput biological screening. Drug Discovery Today 2009;14(3–4):134–146.Google Scholar
  84. 84.
    Howbrook DN, van der Valk AM, O’Shaughnessy MC, Sarker DK, Baker SC, Lloyd AW. Developments in microarray technologies. Drug Discovery Today 2003;8(14):642–651.Google Scholar
  85. 85.
    Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature 2001;411(6833):107–110.Google Scholar
  86. 86.
    Sharma S, Rao A. RNAi screening: tips and techniques. Nature Immunology 2009;10(8):799–804.Google Scholar
  87. 87.
    Brafman DA, de Minicis S, Seki E, Shah KD, Teng DY, Brenner D, et al. Investigating the role of the extracellular environment in modulating hepatic stellate cell biology with arrayed combinatorial microenvironments. Integrative Biology 2009;1(8–9):513–524.Google Scholar
  88. 88.
    Fernandes TG, Kwon S-J, Bale SS, Lee M-Y, Diogo MM, Clark DS, et al. Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnology and Bioengineering 2010;106(1):106–118.Google Scholar
  89. 89.
    Tweedie CA, Anderson DG, Langer R, Van Vliet KJ. Combinatorial material mechanics: high-throughput polymer synthesis and nanomechanical screening. Advanced Materials 2005;17(21):2599–2604.Google Scholar
  90. 90.
    Urquhart AJ, Anderson DG, Taylor M, Alexander MR, Langer R, Davies MC. High throughput surface characterisation of a combinatorial material library. Advanced Materials 2007;19(18):2486–2491.Google Scholar
  91. 91.
    Di Carlo D, Wu LY, Lee LP. Dynamic single cell culture array. Lab on a Chip 2006;6(11):1445–1449.Google Scholar
  92. 92.
    Singh M, Berkland C, Detamore MS. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Engineering Part B-Reviews 2008;14(4):341–366.Google Scholar
  93. 93.
    Hung PJ, Lee PJ, Sabounchi P, Aghdam N, Lin R, Lee LP. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab on a Chip 2005;5(1):44–48.Google Scholar
  94. 94.
    Pihl J, Sinclair J, Sahlin E, Karlsson M, Petterson F, Olofsson J, et al. Microfluidic gradient-generating device for pharmacological profiling. Analytical Chemistry 2005;77(13):3897–3903.Google Scholar
  95. 95.
    Wang ZH, Kim MC, Marquez M, Thorsen T. High-density microfluidic arrays for cell cytotoxicity analysis. Lab on a Chip 2007;7(6):740–745.Google Scholar
  96. 96.
    Thompson DM, King KR, Wieder KJ, Toner M, Yarmush ML, Jayaraman A. Dynamic gene expression profiling using a microfabricated living cell array. Analytical Chemistry 2004;76(14):4098–4103.Google Scholar
  97. 97.
    Kim L, Vahey MD, Lee HY, Voldman J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab on a Chip 2006;6(3):394–406.Google Scholar
  98. 98.
    Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR. Versatile, fully automated, microfluidic cell culture system. Analytical Chemistry 2007;79(22):8557–8563.Google Scholar
  99. 99.
    Lii J, Hsu W-J, Parsa H, Das A, Rouse R, Sia SK. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Analytical Chemistry 2008;80(10):3640–3647.Google Scholar
  100. 100.
    Armant DR. Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Developmental Biology 2005;280(2):260–280.Google Scholar
  101. 101.
    Veeman MT, Axelrod JD, Moon RT. A second canon: functions and mechanisms of beta-catenin-independent wnt signaling. Developmental Cell 2003;5(3):367–377.Google Scholar
  102. 102.
    Dong H, Hartgerink JD. Short homodimeric and heterodimeric coiled coils. Biomacromolecules 2006;7(3):691–695.Google Scholar
  103. 103.
    Anderson DG, Putnam D, Lavik EB, Mahmood TA, Langer R. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 2005;26(23):4892–4897.Google Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  • Ian Wheeldon
  • Javier Fernandez
  • Hojae Bae
  • Hirokazu Kaji
  • Ali Khademhosseini
    • 1
    • 2
    Email author
  1. 1.Department of Medicine, Center for Biomedical EngineeringBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridge

Personalised recommendations