Nitric Oxide Related Pathophysiological Changes Following Subarachnoid Haemorrhage

Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 110/1)


Subarachnoid hemorrhage (SAH) comprises only about 7% of all strokes worldwide but is associated with severe mortality and morbidity. SAH is associated with a number of secondary pathologies, such as: transient cerebral vasospasm, delayed ischemic neuronal deficit (DIND), cortical spreading depression, microcirculatory modifications, microthrombosis and ischemic complications. Available data demonstrate that there are complix interactions among these secondary complications, and NO plays an important role among the interactions. NO has been implicated to be a crucial molecule in eliminating vasospasm, facilitating neuroprotection, anti-microthrombosis, cerebral ischemic tolerance and promoting endothelial cell function. Therefore, therapeutic agent targeting a key component in the pathopyhysiology of SAH such as NO and its related enzymes would be favorable for future development of SAH drugs. Alternatively, because of the complex nature of the secondary complications after SAH, agents with multiple efficacies on these complications, or the combination of several agents such as NO donors, oxide radical scavengers and neuroprotectants might be more desirable.


eNOS Microthrombosis Nitric oxide (NO) Oxidative stress Subarachnoid hemorrhage (SAH) 



This research is supported by funding from Physician Service Incorporated Ontario, Brain Aneurism Foundation to Dr. R Loch Macdonald.

Conflict of interest statement Dr. R. Loch Macdonald is a consultant for Actelion Pharmaceuticals. He is chief scientific officer of Edge Therapeutics.


  1. 1.
    Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke 1996;27:1459–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Forstermann U, Munzel, T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006;113:1708–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Hashiguchi A, Yano S, Morioka M, Hamada J, Ushio Y, Takeuchi Y, et al. Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2004;24:271–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol. 1990;30, 535–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Wennmalm A, Benthin G, Petersson AS. Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol. 1992;106:507–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Fujiwara S, Kassell NF, Sasaki T, Nakagomi T, Lehman RM. Selective hemoglobin inhibition of endothelium-dependent vasodilation of rabbit basilar artery. J Neurosurg. 1986;64:445–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Kanamaru K, Waga S, Kojima T, Fujimoto K, Niwa S. Endothelium-dependent relaxation of canine basilar arteries. Part 2: Inhibition by hemoglobin and cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage. Stroke 1987;18:938–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Byrne JV, Griffith TM, Edwards DH, Harrison TJ, Johnston KR. Investigation of the vasoconstrictor action of subarachnoid haemoglobin in the pig cerebral circulation in vivo. Br J Pharmacol. 1989;97:669–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Black SM, Fineman JR, Steinhorn RH, Bristow J, Soifer SJ. Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol. 1998;275:H1643–51.PubMedGoogle Scholar
  12. 12.
    Mattsson EJ, Kohler TR, Vergel SM, Clowes AW. Increased blood flow induces regression of intimal hyperplasia. Arterioscler Thromb Vasc Biol. 1997;17:2245–49.PubMedCrossRefGoogle Scholar
  13. 13.
    Mazumder B, Seshadri V, Fox PL. Translational control by the 3’-UTR: the ends specify the means. Trends Biochem Sci. 2003;28:91–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Harrison DG, Kurz MA, Quillen JE, Sellke FW, Mugge A. Normal and pathophysiologic considerations of endothelial regulation of vascular tone and their relevance to nitrate therapy. Am J Cardiol. 1992;70:11B–7B.PubMedCrossRefGoogle Scholar
  15. 15.
    Harrison DG. The endothelial cell. Heart Dis Stroke 1992;1:95–9.PubMedGoogle Scholar
  16. 16.
    Ayer RE, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl. 2008;104:33–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Yoshida J, Takayasu M. Modification of endothelial nitric oxide synthase through AMPK after experimental subarachnoid hemorrhage. J Neurotrauma. 2009;26(7):1157–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Griendling KK, Ushio-Fukai M. Redox control of vascular smooth muscle proliferation. J Lab Clin Med. 1998;132:9–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Sabri M, Kawashima A, Ai J, Macdonald RL. Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res. 2008;1238:163–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Nau R, Haase S, Bunkowski S, Bruck W. Neuronal apoptosis in the dentate gyrus in humans with subarachnoid hemorrhage and cerebral hypoxia. Brain Pathol. 2002;12:329–36.PubMedGoogle Scholar
  21. 21.
    Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, et al. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009;10:103.PubMedCrossRefGoogle Scholar
  22. 22.
    Schievink WI. Intracranial aneurysms. N Engl J Med. 1997;336:28–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Vergouwen MD, Vermeulen M, Coert BA, Stroes ES, Roos YB. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:1761–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Weidauer S, Vatter H, Beck J, Raabe A, Lanfermann H, Seifert V., et al. Focal laminar cortical infarcts following aneurysmal subarachnoid haemorrhage. Neuroradiology 2008;50:1–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Naidech AM, Drescher J, Ault ML, Shaibani, A, Batjer, HH, Alberts, MJ. Higher hemoglobin is associated with less cerebral infarction, poor outcome, and death after subarachnoid hemorrhage. Neurosurgery 2006;59:775–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Naidech AM, Drescher J, Tamul P, Shaibani A, Batjer HH, Alberts MJ. Acute physiological derangement is associated with early radiographic cerebral infarction after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2006;77:1340–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Suzuki N, Nakamura T, Imabayashi S, Ishikawa Y, Sasaki T, Asano T. Identification of 5-hydroxy eicosatetraenoic acid in cerebrospinal fluid after subarachnoid hemorrhage. J Neurochem. 1983;41:1186–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Ohkuma H, Suzuki S, Nonogaki Y, Sohma M. [Disturbance of inhibitory capacity of endothelial cell for platelet adhesion or aggregation following experimental subarachnoid hemorrhage]. No Shinkei Geka. 1990;18:47–52.PubMedGoogle Scholar
  29. 29.
    Kaneda K, Fujita M, Yamashita S, Kaneko T, Kawamura Y, Izumi T, et al. Prognostic value of biochemical markers of brain damage and oxidative stress in post-surgical aneurysmal subarachnoid hemorrhage patients. Brain Res Bull. 2010;81:173–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Gaetani P, Pasqualin A, Baena R, Borasio E, Marzatico F. Oxidative stress in the human brain after subarachnoid hemorrhage. J Neurosurg. 1998;89:748–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Kaynar MY, Tanriverdi T, Kemerdere R, Atukeren P, Gumustas K. Cerebrospinal fluid superoxide dismutase and serum malondialdehyde levels in patients with aneurysmal subarachnoid hemorrhage: preliminary results. Neurol Res. 2005;27:562–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Marzatico F, Gaetani P, Cafe C, Spanu G, Baena R. Antioxidant enzymatic activities after experimental subarachnoid hemorrhage in rats. Acta Neurol Scand. 1993;87:62–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Marzatico F, Gaetani P, Tartara F, Bertorelli L, Feletti F, Adinolfi D, et al. Antioxidant status and alpha1-antiproteinase activity in subarachnoid hemorrhage patients. Life Sci. 1998;63:821–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev. 2002;54:271–84.PubMedCrossRefGoogle Scholar
  35. 35.
    Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cell Mol Neurobiol. 1998;18:667–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17:871–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Egge A, Waterloo K, Sjoholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery 2001;49:593–605.PubMedGoogle Scholar
  38. 38.
    Handa Y, Weir BK, Nosko M, Mosewich R, Tsuji T, Grace M. The effect of timing of clot removal on chronic vasospasm in a primate model. J Neurosurg. 1987;67:558–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Dorsch NW. Therapeutic approaches to vasospasm in subarachnoid hemorrhage. Curr Opin Crit Care. 2002;8:128–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105:23–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Neurol Res. 2006;28:730–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Hanggi D, Steiger HJ. Nitric oxide in subarachnoid haemorrhage and its therapeutics implications. Acta Neurochir (Wien). 2006; 148:605–13.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  1. 1.Division of Neurosurgery, St. Michael’s Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital and Department of SurgeryUniversity of TorontoTorontoCanada

Personalised recommendations