Tiling Freeform Shapes With Straight Panels: Algorithmic Methods.

  • Johannes Wallner
  • Alexander Schiftner
  • Martin Kilian
  • Simon Flöry
  • Mathias Höbinger
  • Bailin Deng
  • Qixing Huang
  • Helmut Pottmann

Abstract

This paper shows design studies with bent panels which are originally rectangular or at least approximately rectangular. Based on recent results obtained in the geometry processing community, we algorithmically approach the questions of an exact rectangular shape of panels; of watertightness of the resulting paneling; and of the panel shapes being achievable by pure bending. We conclude the paper with an analysis of stress and strain in bent and twisted panels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cazals, F., and Pouget, M. 2003. Estimating differential quantities using polynomial fitting of osculating jets. In Symp. Geometry processing, Eurographics, L. Kobbelt, P. Schröder, and H. Hoppe, Eds., 177–178.Google Scholar
  2. Chen, J., and Han, Y. 1996. Shortest paths on a polyhedron. I. Computing shortest paths. Int. J. Comput. Geom. Appl. 6, 127–144.Google Scholar
  3. do Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google Scholar
  4. Kahlert, J., Olson, M., and Zhang, H. 2010. Width-bounded geodesic strips for surface tiling. Vis. Computer. to appear.Google Scholar
  5. Kimmel, R., and Sethian, J. A. 1998. Computing geodesic paths on manifolds. PNAS 95, 8431–8435.Google Scholar
  6. Pirazzi, C., and Weinand, Y. 2006. Geodesic lines on free-form surfaces: optimized grids for timber rib shells. In Proc. World Conference on Timber Engineering. 7pp.Google Scholar
  7. Polthier, K., and Schmies, M. 1998. Straightest geodesics on polyhedral surfaces. In Mathematical Visualization, Springer, H.-C. Hege and K. Polthier, Eds., 391–409.Google Scholar
  8. Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., and Wallner, J. 2008. Freeform surfaces from single curved panels. ACM Trans. Graphics 27, 3, #76, 1–10. Proc. SIGGRAPH.Google Scholar
  9. Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas, L., and Wallner, J. 2010. Geodesic patterns. ACM Trans. Graphics 29, 4, #43, 1–10. Proc. SIGGRAPH.Google Scholar
  10. Rose, K., Sheffer, A., Wither, J., Cani, M., and Thibert, B. 2007. Developable surfaces from arbitrary sketched boundaries. In Symp. Geom. Processing, A. Belyaev and M. Garland, Eds. 163–172.Google Scholar
  11. Shelden, D. 2002. Digital surface representation and the constructibility of Gehry’s architecture. PhD thesis, M.I.T.Google Scholar
  12. Spuybroek, L. 2004. NOX: Machining Architecture. Thames & Hudson.Google Scholar
  13. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graphics 24, 3, 553–560. Proc. SIGGRAPH.Google Scholar

Copyright information

© Springer-Verlag/Vienna 2010

Authors and Affiliations

  • Johannes Wallner
    • 1
    • 2
  • Alexander Schiftner
    • 2
    • 3
  • Martin Kilian
    • 2
    • 3
  • Simon Flöry
    • 2
    • 3
  • Mathias Höbinger
    • 2
    • 3
  • Bailin Deng
    • 2
  • Qixing Huang
    • 4
  • Helmut Pottmann
    • 2
    • 5
  1. 1.Technische Universität GrazGrazAustria
  2. 2.Technische Universität WienWienAustria
  3. 3.Evolute GmbHWienAustria
  4. 4.Clark CenterStanford UniversityStanfordUSA
  5. 5.KAUSTSaudi Ariabia

Personalised recommendations