Case Studies in Cost-Optimized Paneling of Architectural Freeform Surfaces

  • Michael Eigensatz
  • Mario Deuss
  • Alexander Schiftner
  • Martin Kilian
  • Niloy J. Mitra
  • Helmut Pottmann
  • Mark Pauly

Abstract

Paneling an architectural freeform surface refers to an approximation of the design surface by a set of panels that can be manufactured using a selected technology at a reasonable cost, while respecting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. Eigensatz and co-workers [Eigensatz et al. 2010] have recently introduced a computational solution to the paneling problem that allows handling large-scale freeform surfaces involving complex arrangements of thousands of panels. We extend this paneling algorithm to facilitate effective design exploration, in particular for local control of tolerance margins and the handling of sharp crease lines. We focus on the practical aspects relevant for the realization of large-scale freeform designs and evaluate the performance of the paneling algorithm with a number of case studies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobenko, A., and Suris, Yu. 2008. Discrete differential geometry: Integrable Structure. No. 98 in Graduate Studies in Math. American Math. Soc.Google Scholar
  2. do Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google Scholar
  3. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM Trans. Graphics 29, 3.CrossRefGoogle Scholar
  4. Glymph, J., Shelden, D., Ceccato, C., Mussel, J., and Schober, H. 2002. A parametric strategy for freeform glass structures using quadrilateral planar facets. In Acadia 2002, ACM, 303–321.Google Scholar
  5. Golovinskiy, A., Podolak, J., and Funkhouser, T. 2009. Symmetry-aware mesh processing. Mathematics of Surfaces 2009 (invited paper). to appear.Google Scholar
  6. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25, 3, 681–689.CrossRefGoogle Scholar
  7. Mitra, N. J., Guibas, L. J., and Pauly, M. 2007. Symmetrization. ACM Trans. Graphics 26, 3, 63.Google Scholar
  8. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., and Wang, W. 2007. Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 26, 3, #65,1–11.CrossRefGoogle Scholar
  9. Pottmann, H., Hofer, M., and Kilian, A., Eds. 2008. Advances in Architectural Geometry. Vienna.Google Scholar
  10. Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., and Wallner, J. 2008. Freeform surfaces from single curved panels. ACM Trans. Graphics 27, 3, #76, 1–10.CrossRefGoogle Scholar
  11. Schiftner, A., HöObinger, M., Wallner, J., and Pottmann, H. 2009. Packing circles and spheres on surfaces. ACM Trans. Graphics 28, 5. Proc. SIGGRAPH Asia.Google Scholar
  12. Shelden, D. 2002. Digital surface representation and the constructibility of Gehry’s architecture. PhD thesis, M.I.T.Google Scholar

Copyright information

© Springer-Verlag/Vienna 2010

Authors and Affiliations

  • Michael Eigensatz
    • 1
  • Mario Deuss
    • 2
  • Alexander Schiftner
    • 1
  • Martin Kilian
    • 3
  • Niloy J. Mitra
    • 4
  • Helmut Pottmann
    • 3
  • Mark Pauly
    • 2
  1. 1.Evolute GmbHWienAustria
  2. 2.Laboratoire d’informatique graphique et géométriqueÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Technische Universität WienWienAustria
  4. 4.King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations