Deadly Glue — Adhesive Traps of Carnivorous Plants

  • Wolfram Adlassnig
  • Thomas Lendl
  • Marianne Peroutka
  • Ingeborg Lang


Carnivorous plants trap and utilize animals in order to improve their supply with mineral nutrients. One strategy for prey capture is the use of adhesive traps, i.e., leaves that produce sticky substances. Sticky shoots are widespread in the plant kingdom and serve to protect the plant, especially flowers and seeds. In some taxa, mechanisms have been developed to absorb nutrients from the decaying carcasses of animals killed by the glue. In carnivorous plants sensu stricto, additional digestive enzymes are secreted into the glue to accelerate degradation of prey organisms.

The glues are secreted by glands that are remarkably uniform throughout all taxa producing adhesive traps. They follow the general scheme of plant glandular organs: the glands consist of a stalk, a neck equipped with a suberin layer that separates the gland from the rest of the plant, and the glandular cells producing sticky secretions. This glue always forms droplets at the tip of the glandular hairs. In most genera, these glands produce only glue whereas enzymes for prey digestion are secreted by a second type of gland. Two types of glue can be distinguished, polysaccharide mucilage in Droseraceae, Lentibulariaceae and their relatives, and terpenoid resins in Roridulaceae. On the ultrastructural level, mucilage is produced by the Golgi apparatus. Resins can be expected to be produced by the endoplasmic reticulum and by leucoplasts.

Adhesive traps are suitable not only for the capture of small animals but also for the collection of organic particles like pollen grains. The glue may contain toxic compounds but the prey usually dies from suffocation by clogging of its tracheae. In Pinguicula and Drosera, the performance of the traps is improved by a slow movement, i.e., the folding of the leaf around the prey animal upon stimulation. In some species of Nepenthes, a pitcher with smooth walls is filled with a sticky digestive fluid. Some organisms, however, have developed strategies to survive on the deadly traps. Several species of Hemiptera are able to walk on the sticky traps and nourish on the prey; their faeces are absorbed by the plant. In Roridula, this relationship is highly specialized and essential for both the plant and the insect. Mutualistic fungi and bacteria are common in many adhesive traps where they degrade and dissolve the plant’s prey. The traps of Drosera, on the other hand, are virtually sterile.

In spite of the extensive literature on adhesive traps, numerous questions still remain. Only a small percentage of “sticky” plants have actually been tested for carnivory. The properties and composition of their glues are widely unknown. In advanced adhesive traps, the mechanisms regulating secretion and absorption are poorly understood. Thereby, some glues may be applicable for human as they are non-toxic, quite stable under environmental conditions, and partly exhibit mildly antibiotic properties. Some carnivorous plants with adhesive traps have been used by humans for the capture of insects as well as for food processing.


Prey Capture Glandular Cell Glandular Hair Carnivorous Plant Pitcher Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamec L (2009) Ecophysiological investigation on Drosophyllum lusitanicum: Why doesn’t the plant dry out? Carnivorous Plant Newsletter 38: 71–74.Google Scholar
  2. Adamec L (2010) Dark respiration of leaves and traps of terrestrial carnivorous plants: are there greater energetic costs in traps? Central European Journal of Biology 5: 121–1214.CrossRefGoogle Scholar
  3. Adlassnig W (2007) Ökophysiologie karnivorer Kesselfallenpflanzen. PhD thesis, Universität Wien: 541 pp.Google Scholar
  4. Adlassnig W, Peroutka M, Eder G, Pois W, and Lichtscheidl IK (2006) Ecophysiological observations on Drosophyllum lusitanicum. Ecological Research 21: 255–262.CrossRefGoogle Scholar
  5. Adlassnig W, Peroutka M, Lang I, and Lichtscheidl IK (2005) Glands of carnivorous plants as a model system in cell biological research. Acta Botanica Gallica 152: 111–124.CrossRefGoogle Scholar
  6. Adlassnig W, Steinhauser G, Peroutka M, Sterba JH, Lichtscheidl IK, and Bichler M (2009) Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants. Applied Radiation and Isotopes 67: 2117–2122.CrossRefGoogle Scholar
  7. Adler PH and Malmquist B (2004) Predation on black flies (Diptera: Simuliidae) by the carnivorous plant Pinguicula vulgaris (Lentibulariaceae) in northern Sweden. Entomologica Fennica 15: 124–128.Google Scholar
  8. Albert VA, Williams SE, and Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257: 1491–1495.CrossRefGoogle Scholar
  9. Anderson B (2005) Adaptions to foliar absorption of faeces: a pathway in plant carnivory. Annals of Botany 95: 757–761.CrossRefGoogle Scholar
  10. Anderson B and Midgley JJ (2002) It takes two to tango but three is a tangle: mutualists and cheaters on the carnivorous plant Roridula. Oecologia 132: 369–372.CrossRefGoogle Scholar
  11. Anderson B and Midgley JJ (2007) Density-dependent outcomes in a digestive mutualism between carnivorous Roridula plants and their associated hemipterans. Oecologia 152: 115–120.CrossRefGoogle Scholar
  12. Antor RJ and Garcia MB (1994) Prey capture by a carnivorous plant with hanging adhesive traps: Pinguicula longifolia. American Midland Naturalist 131: 128–135.CrossRefGoogle Scholar
  13. Aspinall GO and Puvanesarajah V (1984) Selective cleavage of b-D-Glucopyranosiduronic acid linkages in methylated polysaccharide acids from Drosera species. Carbohydrate Research 131:53–60.CrossRefGoogle Scholar
  14. Barthlott W, Fischer E, Frahm JP, and Seine R (2000) First experimental evidence for zoophagy in the Hepatic Colura. Plant Biology 2: 93–97.CrossRefGoogle Scholar
  15. Barthlott W, Porembski S, Seine R, and Theisen I (2004) Karnivoren. Biologie und Kultur fleischfressender Pflanzen. Eugen Ulmer, StuttgartGoogle Scholar
  16. Beal WJ (1876) Carnivorous plants. The American Naturalist 10: 588–591.CrossRefGoogle Scholar
  17. Bopp M (1985) Leaf blade movement of Drosera and auxin distribution. Naturwissenschaften 72: 434.CrossRefGoogle Scholar
  18. Carrow T, Hirschel K, Winkelmann H, and Radke R (1997) Fleischfressende Pflanzen: tödliche Fallen. Audiovisual Material ZDF, Germany: length 45 min.Google Scholar
  19. Chase MW, Christenhusz MJM, Sanders D, and Fay MF (2009) Murderous plants: Victorian gothic, Darwin and modern insights into vegetable carnivory. Botanical Journal of the Linnaean Society 161:329–356.CrossRefGoogle Scholar
  20. Chiovitti A, Dugdale TM, and Wetherbee R (2006) Diatom adhesives: Molecular and mechanical properties. In: Smith AM and Callow JA (eds) Biological Adhesives. Springer, Berlin: pp 79–103.CrossRefGoogle Scholar
  21. D’Amato P (1998) The savage garden. Cultivating Carnivorius Plants, 1st Ed. Ten Speed Press, Berkely.Google Scholar
  22. Darnowski DW (2002) Triggerplants, 1st Ed. Rosenberg Publishing, Kenthurst.Google Scholar
  23. Darnowski DW (2003) Triggerplants (Stylidium; Stylidiaceae): a new floral and horticultural crop with preliminary analysis of hardiness. Acta Horticulturae 624: 93–101.Google Scholar
  24. Darnowski DW, Carroll DM, Plachno B, Kabanoff E, and Cinnamon E (2006) Evidence of protocarnivory in triggerplants (Stylidium spp.; Stylidiaceae). Plant Biology 8: 1–8.CrossRefGoogle Scholar
  25. Darwin C (1875) Insectivorous Plants, 1st Ed. John Murray, London.CrossRefGoogle Scholar
  26. Devecka A (2007) Diversität der Nepenthes-Falle unter besonderer Berücksichtigung der Oberflächenstrukturen und ihrer Rolle beim Beutefang. Diploma thesis, Technical University Zvolen: 123 pp.Google Scholar
  27. Di Giusto B, Grosbois VV, Fargeas E, Marshall DJ, and Gaume L (2008) Contribution of pitcher fragance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Bornea. Journal of Biosciences 33: 121–136.CrossRefGoogle Scholar
  28. Didry N, Dubreuil L, Trotin F, and Pinkas M (1998) Antimicrobial activity of aerial parts of Drosera peltata Smith on oral bacteria. Journal of Ethnopharmacology 60: 91–96.CrossRefGoogle Scholar
  29. Dolling WR and Palmer JM (1991) Pameridea (Hemiptera, Miridae) — predaceous bugs specific to the highly viscid plant genus Roridula. Systematic Entomology 16: 319–328.Google Scholar
  30. Dowe A (1987) Räuberische Pilze, 2nd Ed. A. Ziemsen, Wittenberg.Google Scholar
  31. Eisner T and Shepard J (1965) Caterpillar feeding on a sundew plant. Science 150: 1608–1609.CrossRefGoogle Scholar
  32. Ellis AG and Midgley JJ (1996) A new plant-animal mutualism involving a plant with sticky leaves and a resident hemipteran insect. Oecologia 106: 478–481.CrossRefGoogle Scholar
  33. Ellison AM (2006) Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology 8: 740–747.CrossRefGoogle Scholar
  34. Erni P, Varagnat M, and McKinley GH (2008) Little shop of horrors: rheology of the mucilage of Drosera sp., a carnivorous plant. In: Co A, Leal LG, Colby RH, and Giacomin AJ (eds) The XVth International Conference on Rheology, Monterey: pp 579–581.Google Scholar
  35. Fauland K, Krbez P, and Heinrich G (2001) Indirekte Karnivorie von Rubus phoenicolasius Maxim. durch symbiontische Pilze im Sekret der Drüsenhaare? 14. Tagung des Österreichischen Arbeitskreises für Pflanzenphysiologie, Forstliche Bundesversuchsanstalt, Waldforschungszentrum, Neuberg an der Mürz: 112 pp.Google Scholar
  36. Fenner CA (1904) Beiträge zur Kenntnis der Anatomie, Entwicklungsgeschichte und Biologie der Laubblätter und Drüsen einiger Insektivoren. Flora 93: 335–434.Google Scholar
  37. Furuset K (2008) Tettegrasets rolle i tettemelk. Blyttia 66: 55–62.Google Scholar
  38. Gaume L and Forterre Y (2007) A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS ONE 2007: 1–7.Google Scholar
  39. Gibson TC (1999) Differential escape from insects from carnivorous plant traps. American Midland Naturalist 125: 55–62.CrossRefGoogle Scholar
  40. Givnish TJ (1989) Ecology and evolution of carnivorous plants. Plant-animal interactions. McGraw-Hill, New York: pp 243–290.Google Scholar
  41. Gloßner F (1992) Ultraviolet patterns in the traps and flowers of some carnivorous plants. Botanische Jahrbücher für Systematik 113:577–587.Google Scholar
  42. Gorb SN, Voigt D, and Gorb EV (2007) Visualisation of small fluid droplets on biological and artificial surfaces using the Cryo-SEM approach. In: Mendez-Vilas A and Diasz J (eds) Modern Research and Educational Topics in Microscopy, 2nd Ed. Formatex, Badajoz: pp 812–819.Google Scholar
  43. Gowda DC, Reuter G, and Schauer R (1982) Structural features of an acidic polysaccharide from the mucin of Drosera binata. Phytochemistry 21: 2297–2300.CrossRefGoogle Scholar
  44. Gowda DC, Reuter G, and Schauer R (1983) Structural studies of an acidic polysaccharide from the mucin secreted by Drosera capensis. Carbohydrate Research 113: 113–124.CrossRefGoogle Scholar
  45. Green S, Green TL, and Heslop-Harrison Y (1979) Seasonal heterophylly and leaf gland features in Triphyophyllum (Dioncophyllaceae) a new carnivorous plant genus. Botanical Journal of the Linnaean Society 78: 99–116.CrossRefGoogle Scholar
  46. Haag AP (2006) Mechanical properties of bacterial exopolymeric adhesives and their commercial development. In: Smith AM and Callow JA (eds) Biological Adhesives. Springer, Berlin: pp 1–19.CrossRefGoogle Scholar
  47. Hagan DV, Grogan W, Murza GL, and Davis AR (2008) Biting midges (Diptera: Ceratopogonidae) from the English sundew, Drosera anglica Hudson (Droseraceae), at two fens in Saskatchewan, Canada. Proceedings of the Entomological Society of Washington, Vol. 110: pp 397–401.CrossRefGoogle Scholar
  48. Hanslin HM and Karlsson PS (1996) Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species. Oecologia 106: 370–375.CrossRefGoogle Scholar
  49. Harder R and Zemlin I (1968) Blütenbildung von Pinguicula lusitanica in vitro durch Fütterung mit Pollen. Planta 78: 72–78.CrossRefGoogle Scholar
  50. Hartmeyer S (1998) Carnivory in Byblis revisited II: the phenomenon of symbiosis on insect trapping plants. Carnivorous Plant Newsletter 27: 110–113.Google Scholar
  51. Heslop-Harrison Y (1976) Enzyme secretion and digest uptake in carnivorous plants. In: Sunderland N (ed) Perspectives in Experimental Biology. S.E.B. Symposium, Vol. 2. Proceedings of the 50th Anniversary Meeting, Pergamon Press, Oxford, Cambridge: pp 463–476.Google Scholar
  52. Heslop-Harrison Y (2004) Biological flora of the British Isles: Pinguicula L. Journal of Ecology 92: 1071–1118.CrossRefGoogle Scholar
  53. Jeffree CE (2006) The fine structure of the plant cuticle. In: Riederer M and Müller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford: pp 11–125.CrossRefGoogle Scholar
  54. Joel DM, Juniper BE, and Dafni A (1985) Ultraviolet patterns in the traps of carnivorous plants. New Phytologist 101: 585–593.CrossRefGoogle Scholar
  55. Jones RL and Robinson DG (1989) Protein secretion in plant. New Phytologist 111: 567–597.CrossRefGoogle Scholar
  56. Juniper BE, Gilchrist AJ, and Robins RJ (1977) Some features of secretory systems in plants. Histochemical Journal 9: 659–680.CrossRefGoogle Scholar
  57. Juniper BE, Robins RJ, and Joel DM (1989) The Carnivorous Plants, 1st Ed. Academic Press Limited, London.Google Scholar
  58. Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, and Johnson CB (2007) Rational conversion of substrate and product specificity in a Salvia mono-terpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell 19: 1994–2005.CrossRefGoogle Scholar
  59. Kerner von Marilaun A (1876) Die Schutzmittel der Blüthen gegen unberufene Gäste. Verhandlungen der k.u.k. zoologisch-botanischen Gesellschaft (Festschrift) 26: 190–261.Google Scholar
  60. Kitching RL (2000) Food webs and container habitats. The natural history and ecology of phytotelmata. Cambridge University Press, Cambridge.Google Scholar
  61. Klein I (1887) Pinguicula alpina als insektenfressende Pflanze und in anatomischer Beziehung. Beiträge zur Biologie der Pflanzen 3: 163–186.Google Scholar
  62. Kolalite MR (1994) Dynamics of ultrastructure in peltate glands in Nepeta cataria and Dracocephalum moldavica (Lamiaceae) in connection with terpene biosynthesis. Botanicheskii Zhurnal 79: 17–27.Google Scholar
  63. Krbez P, Fauland K, and Heinrich G (2001) Untersuchungen zur möglichen Karnivorie von Rubus phoenicolasius. 14. Tagung des Österreichischen Arbeitskreises für Pflanzenphysiologie, Forstliche Bundesversuchsanstalt, Waldforschungszentrum, Neuberg an der Mürz: 112 pp.Google Scholar
  64. Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, and Lojkowska E (2008) Stimulation of antibacterial naphthochinones and flavonoid accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme and Microbial Technology 42: 216–221.CrossRefGoogle Scholar
  65. Lendl T (2007) Aspekte der Karnivorie der Gattung Genlisea. Diploma Thesis, University of Vienna: 146 pp.Google Scholar
  66. Lloyd FE (1942) The Carnivorous Plants, 9th Ed. Ronald Press, New York.Google Scholar
  67. Meimberg H, Dittrich P, Bringmann G, Schlauer J, and Heubl G (2000) Molecular phylogeny of Caryophyllidae s.l. based on MatK sequences with special emphasis on carnivorous taxa. Plant Biology 2: 218–228.CrossRefGoogle Scholar
  68. Meimberg H, Thalhammer S, Brachmann A, and Heubl G (2006) Comparative analysis of a translocated copy of the trnK intron in carnivorous family Nepenthaceae. Molecular Phylogenetics and Evolution 39: 478–490.CrossRefGoogle Scholar
  69. Meyer A and Dewèvre A (1894) Über Drosphyllum lusitanicum. Botanisches Zentralblatt 60: 33–41.Google Scholar
  70. Midgley JJ and Stock WD (1998) Natural abundance of δ15N confirms insectivorous habit of Roridula gorgonias, despite it having no proteolytic enzymes. Annals of Botany 82: 387–388.CrossRefGoogle Scholar
  71. Mollenhauer HH, Whaley WG, and Leech JH (1961) A function of the Golgi apparatus in outer rootcap cells. Journal of Ultrastructure Research 5: 193–200.CrossRefGoogle Scholar
  72. Müller K, Borsch T, Legendre L, Porembski S, Theisen I, and Barthlott W (2004) Evolution of carnivory in Lentibulariaceae and Lamiales. Plant Biology 6: 477–490.CrossRefGoogle Scholar
  73. Muravnik LE (1988) The slime gland ultrastructure in Pinguicula vulgaris, Lentibulariaceae, in the course of their development and activity. Botanicheskii Zhurnal 73: 523–1535.Google Scholar
  74. Murza GL, Heaver JR, and Davis AR (2006) Minor pollinator-prey conflict in the carnivorous plant, Drosera anglica. Plant Ecology 184: 43–52.CrossRefGoogle Scholar
  75. Outenreath R and Dauwalder M (1982) Ultrastructural and radioautographic studies of the digestive gland cells of Drosera capensis: I. Development and mucilage secretion. Journal of Ultrastructure Research 80: 71–88.CrossRefGoogle Scholar
  76. Outenreath R and Dauwalder M (1986) Ultrastructural and radioautographic studies of the digestive gland cells of Drosera capensis: II. Changes induced by stimulation. Journal of Ultrastructure Research 95: 164–174.CrossRefGoogle Scholar
  77. Pate JS and Gunning BES (1972) Transfer cells. Annual Review of Plant Physiology 23: 173–196.CrossRefGoogle Scholar
  78. Pauluzzi I (1995) Ultraviolett-Mikroskopie von Pflanzenzellen. Diploma thesis, University of Vienna: 121 pp.Google Scholar
  79. Peroutka M, Adlassnig W, Lendl T, Pranic K, and Lichtscheidl IK (2008) Functional biology of carnivorous plants. In: Teixeira da Silva JA (ed) Floriculture, Ornamental and Plant Biotechnology. Advances and Topical Issues, 5th Ed. Global Science Books, Isleworth: pp 266–287.Google Scholar
  80. Plachno BJ, Adamec L, and Huet H (2009) Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory. Annals of Botany 104: 649–654.CrossRefGoogle Scholar
  81. Pohl SA (2009) Untersuchungen zur möglichen Protokarnivorie von Lathraea squamaria, Salvia glutinosa und Rubus phoeniculasius. Diploma thesis, University of Vienna: 101 pp.Google Scholar
  82. Pranjic K (2004) Zur Ökologie karnivorer Pflanzen: Die Rolle von Mikroorganismen beim Abbau von Tieren durch fleischfressende Pflanzen. Diploma thesis, University of Vienna: 145 pp.Google Scholar
  83. Rachmilevitz T and Joel DM (1976) Ultrastructure of the calyx glands of Plumbago capensis Thumb. in relation to the process of secretion. Israel Journal of Botany 25: 127–139.Google Scholar
  84. Raven JA (1997) Phagotrophy in phototrophs. Limnology and Oceanography 42: 198–205.CrossRefGoogle Scholar
  85. Rice B (2007) Carnivorous plants with hybrid trapping strategies. Carnivorous Plan 36: 23–27.Google Scholar
  86. Rost K and Schauer R (1977) Physical and chemical properties of the mucin sectreted by Drosera capensis. Phytochemistry 16: 365–368.CrossRefGoogle Scholar
  87. Schlauer J (1997) “New” data relating to the evolution and phylogeny of some carnivorous plant families. Carnivorous Plant Newsletter 26: 34–38.Google Scholar
  88. Schnepf E (1961) Quantitative Zusammenhänge zwischen der Sekretion des Fangschleimes und den Golgi-Strukturen bei Drosophyllum lusitanicum. Zeitschrift für Naturwissenschaften 16: 605–610.Google Scholar
  89. Schnepf E (1963a) Zur Cytologie und Physiologie pflanzlicher Drüsen: 1. Teil. Über den Fangschleim der Insectivoren. Flora 153: 1–22.Google Scholar
  90. Schnepf E (1963b) Zur Cytologie und Physiologie pflanzlicher Drüsen: 2. Teil. Über die Wirkung von Sauerstoffentzug und von Atmungsinhibitoren auf die Sekretion des Fangschleimes von Drosophyllum und auf die Feinstruktur der Drüsenzellen. Flora 153: 23–48.Google Scholar
  91. Schnepf E (1963c) Zur Cytologie und Physiologie pflanzlicher Drüsen. 3. Teil. Cytologische Veränderungen in den Drüsen von Drosophyllum während der Verdauung. Planta 59: 351–379.CrossRefGoogle Scholar
  92. Schnepf E (1968) Zur Feinstruktur der schleimsezernierenden Drüsenhaare auf der Ochrea von Rumex und Rheum. Planta 79: 22–34.CrossRefGoogle Scholar
  93. Schnepf E and Busch J (1976) Morphology and kinetics of slime secretion in glands of Mimulus tilingii. Zeitschrift für Pflanzenphysiologie 79: 62–71.Google Scholar
  94. Simoneit BRT, Medeiros PM, and Wollenweber E (2008) Triterpenoids as major components of the insect-trapping glue of Roridula species. Zeitschrift für Naturforschung 63: 625.Google Scholar
  95. Sirova D, Borovec J, Santruckova H, Santrucek J, Vrba J, and Adamec L (2010) Utricularia carnivory revisited: plants supply photosynthetic carbon to traps. Journal of Experimental Botany 61:99–103.CrossRefGoogle Scholar
  96. Smith AM and Callow JA (2006a) Biological Adhesives. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  97. Smith AM and Callow JA (2006b) Preface. In: Smith AM and Callow JA (eds) Biological Adhesives. Springer-Verlag, Berlin: pp V–VII.CrossRefGoogle Scholar
  98. Spomer GG (1999) Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. International Journal of Plant Sciences 160: 98–101.CrossRefGoogle Scholar
  99. Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, and Trzcinski MK (2004) Are natural microcosms useful model systems for ecology? Trends in Ecology and Evolution 19: 379–384.CrossRefGoogle Scholar
  100. Thomas SB and McQuillin J (1953) Ropy milk organism isolated from insectivorous plants. Dairy Industry 18: 40–42.Google Scholar
  101. Thum M (1986) Segegation of habitat and prey in two sympatric carnivorous plant species, Drosera rotundifolia and Drosera intermedia. Oecologia 70: 601–605.CrossRefGoogle Scholar
  102. Thum M (1989) The significance of opportunistic predators for the sympatric carnivorous plant species Drosera intermedia and Drosera rotundifolia. Oecologia 81: 397–400.Google Scholar
  103. Tokunaga T, Takada N, and Ueda M (2004) Mechanism of anti-feedant activity of plumbagin, a compound concerning the chemical defense in carnivorous plant. Tetrahedron Letters 45: 7115–7119.CrossRefGoogle Scholar
  104. Vintejoux C and Shoar-Ghafari A (2000) Mucigenic cells in carnivorous plants. Acta Botanica Gallica 147: 5–20.CrossRefGoogle Scholar
  105. Voigt D, Gorb E, and Gorb S (2009) Hierarchical organisation of the trap in the protocarnivorous plant Roridula gorgonias (Roridulaceae). Journal of Experimental Botany 212: 3184–3191.Google Scholar
  106. Voigt D and Gorb S (2008) An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. Journal of Experimental Biology 211: 2647–2657.CrossRefGoogle Scholar
  107. Volkova PA and Shipunov AB (2009) The natural behaviour of Drosera: Sundews do not catch insects on purpose. Carnivorous Plant Newsletter 38: 114–120.Google Scholar
  108. Wallace J and McGhee K (1999) Testing for Carnivory in Ibicella lutea. Carnivorous Plant Newsletter 28: 49–50.Google Scholar
  109. Williams SE (1976) Comparative sensory physiology of the Droseraceae — the evolution of a plant sensory system. Proceedings of the American Philosophical Society, Vol. 120: pp 187–204.Google Scholar
  110. Williams SE and Pickard BG (1974) Connections and barriers between cells of Drosera tentacles in relation to their electro-physiology. Planta 116: 1–16.CrossRefGoogle Scholar
  111. Williams SE and Spanswick RM (1972) Intracellular recordings of the action potentials which mediate the thigmnastic movements of Drosera. Plant Physiology 49: 64.CrossRefGoogle Scholar
  112. Wollenweber E (2007) Flavonoids occuring in the sticky resin on Roridula dentata and Roridula gorgonias (Roridulaceae). Carnivorous Plant Newsletter 36: 77–80.Google Scholar
  113. Zamora R and Gomez JM (1996) Carnivorous plant-slug interaction: a trip from herbivory to kleptoparasitism. Journal of Animal Ecology 65: 154–160.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2010

Authors and Affiliations

  • Wolfram Adlassnig
    • 1
  • Thomas Lendl
    • 1
  • Marianne Peroutka
    • 1
  • Ingeborg Lang
    • 1
  1. 1.Core Facility Cell Imaging and Ultrastructure Research Division of Cell Physiology and Scientific FilmUniversity of ViennaViennaAustria

Personalised recommendations