Ribosomes pp 405-418 | Cite as

Mechanistic insight into co-translational protein processing, folding, targeting, and membrane insertion

  • Daniel Boehringer
  • Basil Greber
  • Nenad Ban


In the cell newly synthesized polypeptides are subjected to enzymatic processing, chaperone-assisted folding, and targeting to translocation pores at membranes concurrently with their synthesis by the ribosome (Figure 1). The major players in these events are, (i) ribosome-associated chaperones, (ii) nascent-chain-processing enzymes, (iii) the signal recognition particle — a complex that recognizes ribosomes that are translating membrane and some secretory proteins and targets them to the membrane — and (iv) the membrane-protein-insertion machinery — a large multi-subunit trans-membrane complex responsible for protein insertion into or translocation across membranes. The ribosome plays a major role in governing the interplay between the various factors involved. Using electron microscopy, crystallography and biochemical approaches, we investigated the structural and mechanistic aspects of the interaction between these factors and the ribosome.


Trigger Factor Signal Recognition Particle Membrane Insertion Nascent Polypeptide Tunnel Exit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams H, Scotti PA, De Cock H, Luirink J, Tommassen, J (2002) The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. Eur J Biochem 269: 5564–5571PubMedGoogle Scholar
  2. Agashe VR, Guha S, Chang HC, Genevaux P, Hayer-Hartl M, Stemp M, Georgopoulos C, Hartl FU, Barral JM (2004) Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117: 199–209PubMedGoogle Scholar
  3. Angelini S, Deitermann S, Koch HG (2005) FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep 6: 476–481PubMedGoogle Scholar
  4. Ball LA, Kaesberg P (1973) Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro. J MolBiol 79: 531–537Google Scholar
  5. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905–920PubMedGoogle Scholar
  6. Baram D, Pyetan E, Sittner A, Auerbach-Nevo T, Bashan A, Yonath, A (2005) Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc Natl Acad Sci USA 102: 12 017–12 022Google Scholar
  7. Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (2000) Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287: 1232–1239PubMedGoogle Scholar
  8. Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Muller, M (2001) YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2: 709–714PubMedGoogle Scholar
  9. Beck K, Wu LF, Brunner J, Muller, M (2000) Discrimination between SRP-and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J 19: 134–143PubMedGoogle Scholar
  10. Becker T, Bhushan S, Jarasch A, Armache JP, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, et al. (2009) Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326: 1369–1373PubMedGoogle Scholar
  11. Beckmann R, Bubeck D, Grassucci R, Penczek P, Verschoor A, Blobel G, Frank, J (1997) Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278: 2123–2126PubMedGoogle Scholar
  12. Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel, G (2001) Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107: 361–372PubMedGoogle Scholar
  13. Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S (2009) A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc Natl Acad Sci USA 106: 1398–1403PubMedGoogle Scholar
  14. Bessonneau P, Besson V, Collinson I, Duong, F (2002) The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J 21: 995–1003PubMedGoogle Scholar
  15. Bhushan S, Gartmann M, Halic M, Armache JP, Jarasch A, Mielke T, Berninghausen O, Wilson DN, Beckmann, R (2010) alpha-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nat Struct Mol Biol 17: 313–317PubMedGoogle Scholar
  16. Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolic S, Maier T, Schaffitzel C, Wiedmann B, Bukau B, Ban, N (2008) A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452: 108–111PubMedGoogle Scholar
  17. Bornemann T, Jockel J, Rodnina MV, Wintermeyer, W (2008) Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat Struct Mol Biol 15: 494–499PubMedGoogle Scholar
  18. Buskiewicz I, Deuerling E, Gu SQ, Jockel J, Rodnina MV, Bukau B, Wintermeyer, W (2004) Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc Natl Acad Sci USA 101: 7902–7906PubMedGoogle Scholar
  19. Buskiewicz IA, Jockel J, Rodnina MV, Wintermeyer, W (2009) Conformation of the signal recognition particle in ribosomal targeting complexes. RNA 15: 44–54PubMedGoogle Scholar
  20. Chen M, Samuelson JC, Jiang F, Muller M, Kuhn A, Dalbey RE (2002) Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. J Biol Chem 277: 7670–7675PubMedGoogle Scholar
  21. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau, B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400: 693–696PubMedGoogle Scholar
  22. Doudna JA, Batey RT (2004) Structural insights into the signal recognition particle. Annu Rev Biochem 73: 539–557PubMedGoogle Scholar
  23. Driessen AJ (1994) How proteins cross the bacterial cytoplasmic membrane. J Membr Biol 142: 145–159PubMedGoogle Scholar
  24. du Plessis DJ, Berrelkamp G, Nouwen N, Driessen AJ (2009) The lateral gate of SecYEG opens during protein translocation. J Biol Chem 284: 15 805–15 814Google Scholar
  25. Duong F, Wickner, W (1997) Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16: 2756–2768PubMedGoogle Scholar
  26. Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427: 215–221PubMedGoogle Scholar
  27. Eisner G, Moser M, Schafer U, Beck K, Muller, M (2006) Alternate recruitment of signal recognition particle and trigger factor to the signal sequence of a growing nascent polypeptide. J Biol Chem 281: 7172–7179PubMedGoogle Scholar
  28. Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban, N (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431: 590–596PubMedGoogle Scholar
  29. Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM (2004) Heterodimeric GTPase core of the SRP targeting complex. Science 303: 373–377PubMedGoogle Scholar
  30. Giglione C, Boularot A, Meinnel, T (2004) Protein N-terminal methionine excision. Cell Mol Life Sci 61: 1455–1474PubMedGoogle Scholar
  31. Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson, I (2010) The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci USA 107: 10 044–10 049Google Scholar
  32. Gong F, Ito K, Nakamura Y, Yanofsky, C (2001) The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNA(Pro) Proc Natl Acad Sci USA 98: 8997–9001PubMedGoogle Scholar
  33. Gu SQ, Peske F, Wieden HJ, Rodnina MV, Wintermeyer, W (2003) The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9: 566–573PubMedGoogle Scholar
  34. Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann, R (2006) Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444: 507–511PubMedGoogle Scholar
  35. Hartl FU, Hayer-Hartl, M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858PubMedGoogle Scholar
  36. Hoffmann A, Merz F, Rutkowska A, Zachmann-Brand B, Deuerling E, Bukau, B (2006) Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J Biol Chem 281: 6539–6545PubMedGoogle Scholar
  37. Huang GC, Li ZY, Zhou JM, Fischer, G (2000) Assisted folding of D-glyceraldehyde-3-phosphate dehydrogenase by trigger factor. Protein Sci 9: 1254–1261PubMedGoogle Scholar
  38. Jagath JR, Matassova NB, de Leeuw E, Warnecke JM, Lentzen G, Rodnina MV, Luirink J, Wintermeyer, W (2001) Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. RNA 7: 293–301Google Scholar
  39. Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai, K (2010) Recognition of a signal peptide by the signal recognition particle. Nature 465: 507–510PubMedGoogle Scholar
  40. Kaiser CM, Chang HC, Agashe VR, Lakshmipathy SK, Etchells SA, Hayer-Hartl M, Hartl FU, Barral JM (2006) Real-time observation of trigger factor function on translating ribosomes. Nature 444: 455–460PubMedGoogle Scholar
  41. Keenan RJ, Freymann DM, Stroud RM, Walter, P (2001) The signal recognition particle. Annu Rev Biochem 70: 755–775PubMedGoogle Scholar
  42. Kiefer D, Kuhn, A (2007) YidC as an essential and multifunctional component in membrane protein assembly. Int Rev Cytol 259: 113–138PubMedGoogle Scholar
  43. Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban, N (2009) YidC and Oxa1form dimeric insertion pores on the translating ribosome. Mol Cell 34: 344–353PubMedGoogle Scholar
  44. Kol S, Nouwen N, Driessen AJ (2008) Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes. J Biol Chem 283: 31 269–31 273Google Scholar
  45. Kol S, Turrell BR, de Keyzer J, van der Laan M, Nouwen N, Driessen AJ (2006) YidC-mediated membrane insertion of assembly mutants of subunit c of the F1F0 ATPase. J Biol Chem 281: 29 762–29768Google Scholar
  46. Kosolapov A, Deutsch, C (2009) Tertiary interactions within the ribosomal exit tunnel. Nat Struct Mol Biol 16: 405–411PubMedGoogle Scholar
  47. Kramer G, Rauch T, Rist W, Vorderwulbecke S, Patzelt H, Schulze-Specking A, Ban N, Deuerling E, Bukan B, (2002) L23 protein functions as a chaperone docking site on the ribosome. Nature 419: 171–174PubMedGoogle Scholar
  48. Kramer G, Ramachandiran V, Horowitz PM, Hardesty, B (2002) The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Arch Biochem Biophys 403: 63–70PubMedGoogle Scholar
  49. Lakshmipathy SK, Tomic S, Kaiser CM, Chang HC, Genevaux P, Georgopoulos C, Barral JM, Johnson AE, Hartl FU, Etchells SA (2007) Identification of nascent chain interaction sites on trigger factor. J Biol Chem 282: 12 186–12 193Google Scholar
  50. Lee HC, Bernstein HD (2001) The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci USA 98: 3471–3476PubMedGoogle Scholar
  51. Lee HC, Bernstein HD (2002) Trigger factor retards protein export in Escherichia coli. J Biol Chem 277: 43 527–43 535Google Scholar
  52. Lill R, Crooke E, Guthrie B, Wickner, W (1988) The “trigger factor cycle” includes ribosomes, presecretory proteins, and the plasma membrane. Cell 54: 1013–1018PubMedGoogle Scholar
  53. Lotz M, Haase W, Kuhlbrandt W, Collinson, I (2008) Projection structure of yidC: a conserved mediator of membrane protein assembly. J Mol Biol 375: 901–907PubMedGoogle Scholar
  54. Lu J, Deutsch, C (2005) Folding zones inside the ribosomal exit tunnel. Nat Struct Mol Biol 12: 1123–1129PubMedGoogle Scholar
  55. Luirink J, Sinning, I (2004) SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 1694: 17–35PubMedGoogle Scholar
  56. Luirink J, von Heijne G, Houben E, and de Gier JW (2005) Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59: 329–355PubMedGoogle Scholar
  57. Maier R, Eckert B, Scholz C, Lilie H, Schmid FX (2003) Interaction of trigger factor with the ribosome. J Mol Biol 326: 585–592PubMedGoogle Scholar
  58. Maier R, Scholz C, Schmid FX (2001) Dynamic association of trigger factor with protein substrates. J Mol Biol 314: 1181–1190PubMedGoogle Scholar
  59. Maier T, Ferbitz L, Deuerling E, Ban, N (2005) A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15: 204–212PubMedGoogle Scholar
  60. Marin, M (2008) Folding at the rhythm of the rare codon beat. Biotechnol J 3: 1047–1057PubMedGoogle Scholar
  61. Martinez-Hackert E, Hendrickson WA (2009) Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138: 923–934PubMedGoogle Scholar
  62. Menetret JF, Hegde RS, Heinrich SU, Chandramouli P, Ludtke SJ, Rapoport TA, Akey CW (2005) Architecture of the ribosome-channel complex derived from native membranes. J Mol Biol 348: 445–457PubMedGoogle Scholar
  63. Menetret JF, Schaletzky J, Clemons WM, Jr., Osborne AR, Skanland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ, et al. (2007) Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 28: 1083–1092PubMedGoogle Scholar
  64. Merz F, Boehringer D, Schaffitzel C, Preissler S, Hoffmann A, Maier T, Rutkowska A, Lozza J, Ban N, Bukau B, et al. (2008) Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J 27: 1622–1632PubMedGoogle Scholar
  65. Merz F, Hoffmann A, Rutkowska A, Zachmann-Brand B, Bukau B, Deuerling, E (2006) The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J Biol Chem 281: 31 963–31 971Google Scholar
  66. Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL, 3rd, Ban N, Frank, J (2005) Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438: 318–324PubMedGoogle Scholar
  67. Montoya G, Svensson C, Luirink J, Sinning, I (1997) Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385: 365–368PubMedGoogle Scholar
  68. Morgan DG, Menetret JF, Neuhof A, Rapoport TA, Akey CW (2002) Structure of the mammalian ribosome-channel complex at 17A resolution. J Mol Biol 324: 871–886PubMedGoogle Scholar
  69. Murakami A, Nakatogawa H, Ito, K (2004) Translation arrest of SecM is essential for the basal and regulated expression of SecA. Proc Natl Acad Sci USA 101: 12 330–12 335Google Scholar
  70. Muto H, Nakatogawa H, Ito, K (2006) Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol Cell 22: 545–552PubMedGoogle Scholar
  71. Nagamori S, Smirnova IN, Kaback HR (2004) Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165: 53–62PubMedGoogle Scholar
  72. Nakatogawa H, Ito, K (2001) Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol Cell 7: 185–192PubMedGoogle Scholar
  73. Nakatogawa H, Ito, K (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108: 629–636PubMedGoogle Scholar
  74. Natale P, Bruser T, Driessen AJ (2008) Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim Biophys Acta 1778: 1735–1756PubMedGoogle Scholar
  75. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930PubMedGoogle Scholar
  76. Nouwen N, Driessen AJ (2002) SecDFyajC forms a heterotetrameric complex with YidC. Mol Microbiol 44: 1397–1405PubMedGoogle Scholar
  77. Oliver DC, Paetzel, M (2008) Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC. J Biol Chem 283: 5208–5216PubMedGoogle Scholar
  78. Osborne AR, Rapoport TA (2007) Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129: 97–110PubMedGoogle Scholar
  79. Patzelt H, Rudiger S, Brehmer D, Kramer G, Vorderwulbecke S, Schaffitzel E, Waitz A, Hesterkamp T, Dong L, Schneider-Mergener J, et al. (2001) Binding specificity of Escherichia coli trigger factor. Proc Natl Acad Sci USA 98: 14 244–14 249Google Scholar
  80. Picking WD, Picking WL, Odom OW, Hardesty, B (1992) Fluor-escence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. Biochemistry 31: 2368–2375PubMedGoogle Scholar
  81. Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94: 795–807PubMedGoogle Scholar
  82. Raine A, Ivanova N, Wikberg JE, Ehrenberg, M (2004) Simultaneous binding of trigger factor and signal recognition particle to the E. coli ribosome. Biochimie 86: 495–500PubMedGoogle Scholar
  83. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450: 663–669PubMedGoogle Scholar
  84. Raue U, Oellerer S, Rospert S (2007) Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J Biol Chem 282: 7809–7816PubMedGoogle Scholar
  85. Ravaud S, Stjepanovic G, Wild K, Sinning I (2008) The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft. J Biol Chem 283: 9350–9358PubMedGoogle Scholar
  86. Rinke-Appel J, Osswald M, von Knoblauch K, Mueller F, Brimacombe R, Sergiev P, Avdeeva O, Bogdanov A, Dontsova, O (2002) Crosslinking of 4.5S RNA to the Escherichia coli ribosome in the presence or absence of the protein Ffh. RNA 8: 612–625PubMedGoogle Scholar
  87. Rutkowska A, Mayer MP, Hoffmann A, Merz F, Zachmann-Brand B, Schaffitzel C, Ban N, Deuerling E, Bukau, B (2008) Dynamics of trigger factor interaction with translating ribosomes. J Biol Chem 283: 4124–4132PubMedGoogle Scholar
  88. Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE (2000) YidC mediates membrane protein insertion in bacteria. Nature 406: 637–641PubMedGoogle Scholar
  89. Schaffitzel C, Ban, N (2007) Generation of ribosome nascent chain complexes for structural and functional studies. J Struct Biol 158: 463–471PubMedGoogle Scholar
  90. Schaffitzel C, Oswald M, Berger I, Ishikawa T, Abrahams JP, Koerten HK, Koning RI, Ban, N (2006) Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444: 503–506PubMedGoogle Scholar
  91. Schlunzen F, Wilson DN, Tian P, Harms JM, McInnes SJ, Hansen HA, Albrecht R, Buerger J, Wilbanks SM, Fucini, P (2005) The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13: 1685–1694PubMedGoogle Scholar
  92. Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink, J (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 19: 542–549PubMedGoogle Scholar
  93. Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, et al. (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326: 1412–1415PubMedGoogle Scholar
  94. Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R, Kuhn, A (2004) Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J 23: 294–301PubMedGoogle Scholar
  95. Shen K, Shan SO (2010) Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc Natl Acad Sci USA 107: 7698–7703PubMedGoogle Scholar
  96. Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE, Jr (1999) Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 290: 607–614PubMedGoogle Scholar
  97. Takeda M, Webster RE (1968) Protein chain initiation and deformylation in B. subtilis homogenates. Proc Natl Acad Sci USA 60: 1487–1494PubMedGoogle Scholar
  98. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755–765PubMedGoogle Scholar
  99. Tomic S, Johnson AE, Hartl FU, Etchells SA (2006) Exploring the capacity of trigger factor to function as a shield for ribosome bound polypeptide chains. FEBS Lett 580: 72–76PubMedGoogle Scholar
  100. Tsalkova T, Odom OW, Kramer G, Hardesty, B (1998) Different conformations of nascent peptides on ribosomes. J Mol Biol 278: 713–723PubMedGoogle Scholar
  101. Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, et al. (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455: 988–991PubMedGoogle Scholar
  102. Ullers RS, Ang D, Schwager F, Georgopoulos C, Genevaux, P (2007) Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc Natl Acad Sci USA 104: 3101–3106PubMedGoogle Scholar
  103. Ullers RS, Houben EN, Brunner J, Oudega B, Harms N, Luirink, J (2006) Sequence-specific interactions of nascent Escherichia coli polypeptides with trigger factor and signal recognition particle. J Biol Chem 281: 13 999–14 005Google Scholar
  104. Urbanus ML, Froderberg L, Drew D, Bjork P, de Gier JW, Brunner J, Oudega B, Luirink, J (2002) Targeting, insertion, and localization of Escherichia coli YidC. J Biol Chem 277: 12 718–12 723Google Scholar
  105. Urbanus ML, Scotti PA, Froderberg L, Saaf A, de Gier JW, Brunner J, Samuelson JC, Dalbey RE, Oudega B, Luirink, J (2001) Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep 2: 524–529PubMedGoogle Scholar
  106. Valent QA, de Gier JW, von Heijne G, Kendall DA, ten Hagen-Jongman CM, Oudega B, Luirink, J (1997) Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol Microbiol 25: 53–64PubMedGoogle Scholar
  107. van Bloois E, Dekker HL, Froderberg L, Houben EN, Urbanus ML, de Koster CG, de Gier JW, Luirink, J (2008) Detection of crosslinks between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Lett 582: 1419–1424Google Scholar
  108. van Bloois E, Nagamori S, Koningstein G, Ullers RS, Preuss M, Oudega B, Harms N, Kaback HR, Herrmann JM, Luirink, J (2005) The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. J Biol Chem 280: 12 996–13 003Google Scholar
  109. van den Berg B, Clemons WM, Jr., Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427: 36–44Google Scholar
  110. van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165: 213–222PubMedGoogle Scholar
  111. van der Laan M, Houben EN, Nouwen N, Luirink J, Driessen AJ (2001) Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner. EMBO Rep 2: 519–523PubMedGoogle Scholar
  112. Vetro JA, Chang YH (2002) Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo. J Cell Biochem 85: 678–688PubMedGoogle Scholar
  113. Voss NR, Gerstein M, Steitz TA, Moore PB (2006) The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol 360: 893–906PubMedGoogle Scholar
  114. Woolhead CA, Johnson AE, Bernstein HD (2006) Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell 22: 587–598PubMedGoogle Scholar
  115. Woolhead CA, McCormick PJ, Johnson AE (2004) Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116: 725–736PubMedGoogle Scholar
  116. Xie K, Dalbey RE (2008) Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 6: 234–244PubMedGoogle Scholar
  117. Yi L, Celebi N, Chen M, Dalbey RE (2004) Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 279: 39 260–39 267Google Scholar
  118. Yi L, Dalbey RE (2005) Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (review) Mol Membr Biol 22: 101–111PubMedGoogle Scholar
  119. Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE (2003) YidC is strictly required for membrane insertion of subunits a and c of the F(1)F(0)ATP synthase and SecE of the SecYEG translocase. Biochemistry 42: 10 537–10 544Google Scholar
  120. Zeng LL, Yu L, Li ZY, Perrett S, Zhou JM (2006) Effect of C-terminal truncation on the molecular chaperone function and dimerization of Escherichia coli trigger factor. Biochimie 88: 613–619PubMedGoogle Scholar
  121. Zhang X, Kung S, Shan SO (2008) Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. J Mol Biol 381: 581–593PubMedGoogle Scholar
  122. Zhang X, Schaffitzel C, Ban N, Shan SO (2009) Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc Natl Acad Sci USA 106: 1754–1759PubMedGoogle Scholar
  123. Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455: 936–943PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  • Daniel Boehringer
  • Basil Greber
  • Nenad Ban

There are no affiliations available

Personalised recommendations