Skip to main content

Interaction of Giardia with Host Cells

  • Chapter
Giardia

Abstract

In the context of host-Giardia interaction, adhesion of parasites to epithelial cells is considered the initial event that allows establishment of the parasite in the host. During this contact trophozoites also interact with microenvironmental factors to indirectly promote pathophysiologic alterations in the infected host contributing to some extent to the variable clinical outcome of giardiasis. Giardia contains a unique key element, the adhesive disk which is involved in adhesion of Giardia to host cells. This structure together with other specialized parasite elements that include the ventrolateral flange, the flagella, and several parasite molecules located at the intracellular (contractile proteins), epicellular (i.e. cell surface molecules) levels or secreted participate in the colonization of the very hostile environment at the small intestine. Several observations have indicated that trophozoites secrete various molecules that upon interaction with epithelial cells may be responsible for the pathologic changes seen at the enterocyte during the course of giardiasis. Also due to this interaction, alterations related to the transport of a variety of solutes such as chloride and sodium ions as well as high sized proteins have been documented. Moreover changes occur in the arrangement of α-actinin, myosin light chain, F-actin related to cytoskeleton dynamics and of proteins that participate in the intercellular junctions such as claudins and ZO-1 which in turn may lead to the activation of apoptotic signaling. All these manifestations may be related to the parasite strain and are also influenced by the immune, clinical, and nutritional status of the host leading to the onset of giardiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abodeely M, DuBois K, Hehl A, Stefanic S, Sajid M, deSouza W, Attias M, Engel J, Hsieh I, Fetter R, and McKerrow JH (2009) Contiguous compartment functions as er and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8(11): 1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Alonso RA and Peattie DA (1992) Nucleotide sequence of a second alpha giardin gene and molecular analysis of the alpha giardin genes and transcripts in Giardia lamblia. Mol Biochem parasitol 50: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Andersen YS, Gillin FD, and Eckmann L (2006) Adaptive Immunity-dependent intestinal hypermotility contributes to host defense against Giardia spp. Infect immun 74: 2473–2476

    Article  PubMed  CAS  Google Scholar 

  • Argüello-García R, Bazán-Tejeda ML, and Ortega-Pierres G (2009) Encystation commitment in Giardia duodenalis: a long and winding road. Parasite 16: 247–258

    Article  PubMed  Google Scholar 

  • Astiazarán-García H, Espinosa-Cantellano M, Castañón G, Chávez-Munguía B, and Martínez-Palomo A (2000) Giardia lamblia: effect of infection with symptomatic and asymptomatic isolates on the growth of gerbils (Meriones unguiculatus). Exp Parasitol 95: 128–135

    Article  PubMed  Google Scholar 

  • Batista de Carvalho T, Boarato David E, Torossian Coradi S, and Guimarães S (2008) Protease activity in extracellular products secreted in vitro by trophozoites of Giardia duodenalis. Parasitol Res 104: 185–190

    Article  Google Scholar 

  • Becker SM, Cho KN, Guo X, Fendig K, Oosman MN, Whitehead R, Cohn SM, and Houpt ER (2010) Epithelial cell apoptosis facilitates Entamoeba histolytica infection in the gut. Am J Pathol 176: 1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Bermúdez-Cruz RM, Ortega-Pierres G, Ceja V, Coral-Vazquez R, Fonseca R, Cervantes L, Sánchez A, Depardon F, Newport G, and Montañez C (2004) A 63 kDa VSP9B10Alike protein expressed in a C-8 Giardia duodenalis Mexican clone. Arch Med Res 35: 199–208

    Article  PubMed  CAS  Google Scholar 

  • Biagini GA, Yarlett N, Ball GE, Billetz AC, Lindmark DG, Martinez MP, Lloyd D, and Edwards MR (2003) Bacteriallike energy metabolism in the amitochondriate protozoon Hexamita inflata. Mol Biochem Parasitol 128(1): 11–19

    Article  PubMed  CAS  Google Scholar 

  • Bingham AK and Meyer EA (1979) Giardia excystation can be induced in vitro in acidic solutions. Nature 277: 301–302

    Article  PubMed  CAS  Google Scholar 

  • Buret AG, Mitchell K, Muench DG, and Scott KG (2002) Giardia lamblia disrupts tight junctional ZO-1 and increases permeability in non-transformed human small intestinal epithelial monolayers: effects of epidermal growth factor. Parasitology 125: 11–19

    Article  PubMed  CAS  Google Scholar 

  • Chávez B, Knaippe F, González-Mariscal L, and Martínez-Palomo A (1986) Giardia lamblia: electrophysiof ology and ultrastructure of cytopathology in cultured epithelial cells. Exp Parasitol 61: 379–389

    Article  PubMed  Google Scholar 

  • Chávez B and Martínez-Palomo A (1995) Giardia lamblia: freeze-fracture ultrastructure of the ventral disc plasma membrane. J Eukaryot Microbiol 42: 136–141

    Article  PubMed  Google Scholar 

  • Chin AC, Teoh DA, Scott KG, Meddings JB, Macnaughton WK, and Buret AG (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70: 3673–3680

    Article  PubMed  CAS  Google Scholar 

  • Chin AC, Vergnolle N, MacNaughton WK, Wallace JL, Hollenberg MD, and Buret AG (2003) Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proc Natl Acad Sci USA 100: 11104–11109

    Article  PubMed  CAS  Google Scholar 

  • Cendan JC, Souba WW, Copeland EM, and Lind DS (1995) Characterization and growth factor stimulation of L-arginine transport in a human colon cancer cell line. Ann Surg Oncol 2: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Coradi ST and Guimaraes S (2006) Giardia duodenalis: protein substrates degradation by trophozoite proteases. Parasitol Res 99: 131–136

    Article  PubMed  Google Scholar 

  • Crossley R and Holberton DV (1983) Characterization of proteins from the cytoskeleton of Giardia lamblia. J Cell Sci 59: 81–103

    PubMed  CAS  Google Scholar 

  • David EB, Guimaraes S, Ribolla PE, Coradi ST, and Alonso DP (2007) Partial characterization of proteolytic activity in Giardia duodenalis purified proteins. Rev Inst Med Trop Sao Paulo 49: 385–388

    Article  PubMed  Google Scholar 

  • DuBois K, Abodeely M, Sajid M, Engel J, and McKerrow JH (2006) Giardia lamblia cysteine proteases. Parasitol Res 99: 313–316

    Article  PubMed  Google Scholar 

  • Eckmann L (2003) Mucosal defences against Giardia. Parasite Immunol 25: 259–270

    Article  PubMed  CAS  Google Scholar 

  • Eckmann L, Laurent F, Langford TD, Hetsko ML, Smith JR, Kagnoff MF, and Gillin FD (2000) Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol 164(3): 1478–1487

    PubMed  CAS  Google Scholar 

  • Edlind TD, Li J, Visvesvara GS, Vodkin MH, McLaughlin GL, and Katiyar SK (1996) Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Mol Phylogenet Evol 2: 359–367

    Article  Google Scholar 

  • Edwards, MR, Schofield PJ, O’Sullivan WJ, and Costello M (1992) Arginine metabolism during culture of Giardia intestinalis. Mol Biochem Parasitol 53: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Elmendorf HG, Singer SM, Pierce J, Cowan J, and Nash TE (2001) Initiator and upstream elements in the alpha2-tubulin promoter of Giardia lamblia. Mol Biochem Parasitol 113: 157–169

    Article  PubMed  CAS  Google Scholar 

  • Elmendorf HG, Dawson SC, and McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33: 3–28

    Article  PubMed  Google Scholar 

  • Erlandsen SL and Chase DG (1974) Morphological alterations in the microvillous border of villous epithelial cells produced by intestinal microorganisms. Am J Clin Nutr 27: 1277–1286

    PubMed  CAS  Google Scholar 

  • Erlandsen SL and Feely DE (1984) Trophozoite motility and the mechanism of attachment. In: Giardia and giardia sis (S.L. Erlandsen and E.A. Meyer, eds.). Plenum Press, New York, pp 33–63

    Google Scholar 

  • Erlandsen SL, Russo AP, and Turner JN (2004) Evidence for adhesive activity of the ventrolateral flange in Giardia lamblia. J Eukaryot Microbiol 51: 73–80

    Article  PubMed  Google Scholar 

  • Farthing MJ (1996) Giardiasis. Gastroenterol Clin North Am 25: 493–515

    Article  PubMed  CAS  Google Scholar 

  • Farthing MJ (1997) The molecular pathogenesis of giardiasis. J Pediatr Gastroenterol Nutr 24: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Farthing MJ, Pereira ME, and Keusch GT (1986) Description and characterization of a surface lectin from Giardia lamblia. Infect Immun 51: 661–667

    PubMed  CAS  Google Scholar 

  • Farquhar MG and Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17: 375–412

    Article  PubMed  CAS  Google Scholar 

  • Feely DE and Erlandsen SL (1982) Effect of cytochalasin-B, low Ca++ concentration, iodoacetic acid, and quinacrine-HCl on the attachment of Giardia trophozoites in vitro. J Parasitol 68: 869–873

    Article  PubMed  CAS  Google Scholar 

  • Feely DE, Schollmeyer JV, and Erlandsen SL (1982) Giardia spp.: distribution of contractile proteins in the attachment organelle. Exp Parasitol 53: 145–154

    Article  PubMed  CAS  Google Scholar 

  • Friend DS (1966) The fine structure of Giardia muris. J Cell Biol 29: 317–332

    Article  PubMed  CAS  Google Scholar 

  • Galkin A, Kulakova L, Sariyaka E, Lim K, Howard A, and Herzberg O (2004) Structural insight into arginine degradation by arginine deiminase, an antibacterial and parasite drug target. J Biol Chem 279: 14001–14008

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD and Reiner DS (1982) Ment of the flagellate Giardia lamblia: role of reducing agents, serum, temperature, and ionic composition. Mol Cell Biol 2: 369–377

    PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, and Boucher SE (1988) Small-intestinal factors promote encystation of Giardia lamblia in vitro. Infect Immun 56: 705–707

    PubMed  CAS  Google Scholar 

  • Grant J, Mahanty S, Khadir A, MacLean JD, Kokoskin E, Yeager B, Joseph L, Diaz J, Gotuzzo E, Mainville N, and Ward BJ (2001) Wheat germ supplement reduces cyst and trophozoite passage in people with giardiasis. Am J Trop Med Hyg 65: 705–710

    PubMed  CAS  Google Scholar 

  • Halliday CE, Clark C, and Farthing MJ (1988) Giardia-bile salt interactions in vitro and in vivo. Trans R Soc Trop Med Hyg 82: 428–432

    Article  PubMed  CAS  Google Scholar 

  • Hansen WR and Fletcher DA (2008) Tonic shock induces detachment of Giardia lamblia. PLoS Negl Trop Dis 13: e169

    Article  CAS  Google Scholar 

  • Hansen WR, Tulyathan O, Dawson SC, Cande WZ, and Fletcher DA (2006) Giardia lamblia attachment forces is insensitive to surface treatments. Eukaryot Cell 5: 781–783

    Article  PubMed  CAS  Google Scholar 

  • Hare DF, Jarroll EL, and Lindmark DG (1989) Giardia lamblia: characterization of proteinase activity in trophozoites. Exp Parasitol 68: 168–175

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Sánchez J, Linan RF, Salinas-Tobon Mdel R and Ortega-Pierres G (2008) Giardia duodenalis: adhesion-deficient clones have reduced ability to establish infection in Mongolian gerbils. Exp Parasitol 119: 364–372

    Article  PubMed  CAS  Google Scholar 

  • Holberton DV (1974) Attachment of Giardia — a hydrodynamic model based on flagellar activity. J Exp Biol 60: 207–221

    PubMed  CAS  Google Scholar 

  • Holberton D, Baker DA, and Marshall J (1988) Segmented alpha-helical coiled-coil structure of the protein giardin from the Giardia cytoskeleton. J Mol Biol 204: 789–795

    Article  PubMed  CAS  Google Scholar 

  • Inge PM, Edson CM, and Farthing MJ (1988) Attachment of Giardia lamblia to rat intestinal epithelial cells. Gut 29: 795–801

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MC, O’Brien CN, Murphy C, Schwarz R, Miska K, Rosenthal B, and Trout JM (2009) Antibodies to the ventral disc protein δ-giardin prevent in vitro binding of Giardia lamblia trophozoites. J Parasitol 95: 895–899

    Article  PubMed  CAS  Google Scholar 

  • Jimenez JC, Uzcanga G, Zambrano A, Di Prisco MC, and Lynch NR (2000) Identification and partial characterization of excretory/secretory products with proteolytic activity in Giardia intestinalis. J Parasitol 86: 859–862

    PubMed  CAS  Google Scholar 

  • Jimenez JC, Fontaine J, Grzych JM, Dei-Cas E, and Capron M (2004) Systemic and mucosal responses to oral administration of excretory and secretory antigens from Giardia intestinalis. Clin Diagn Lab Immunol 11: 152–160

    PubMed  Google Scholar 

  • Jones RD, Lemanski CL, and Jones TJ (1983) Theory of attachment in Giardia. Biophys J 44: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Kang K, Kim J, Yong TS, and Park SJ (2010) Identification of end-binding 1 (EB1) interacting proteins in Giardia lamblia. Parasitol Res 106: 723–728

    Article  PubMed  Google Scholar 

  • Katelaris PH, Naeem A, and Farthing MJ (1994) Activity of metronidazole, azithromycin and three benzimidazoles on Giardia lamblia growth and attachment to a human intestinal cell line. Aliment Pharmacol Ther 2: 187–192

    Google Scholar 

  • Katelaris PH, Naeem A, and Farthing MJ (1995) Attachment of Giardia lamblia trophozoites to a cultured human intestinal cell line. Gut 37: 512–518

    Article  PubMed  CAS  Google Scholar 

  • Kaur H, Ghosh S, Samra H, Vinayak VK, and Ganguly NK (2001) Identification and characterization of an excretorysecretory product from Giardia lamblia. Parasitology 123: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ and Brugerolle G (2006) Evidence from SSU rRNA phylogeny that Octomitus is a sister lineage to Giardia. Protist 157: 205–212

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ and Doolittle WF (1996) Alpha-tubulin from earlydiverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13: 1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Klemba M and Goldberg DE (2002) Biological roles of proteases in parasitic protozoa. Annu Rev Biochem 71: 275–305

    Article  PubMed  CAS  Google Scholar 

  • Knaippe F (1990) Giardia lamblia attachment to biological and inert substrates. Microsc Electron Biol Cel 14: 35–43

    CAS  Google Scholar 

  • Knodler LA, Edwards MR, and Schofield PJ (1994) The intracellular amino acid pools of Giardia intestinalis, Trichomonas vaginalis, and Crithidia luciliae. Exp Parasitol 79(2): 117–125

    Article  PubMed  CAS  Google Scholar 

  • Kummer S, Hayes GR, Gilbert RO, Beach DH, Lucas JJ, and Singh BN (2008) Induction of human host cell apoptosis by Trichomonas vaginalis cysteine proteases is modulated by parasite exposure to iron. Microb Pathog 44: 197–203

    Article  PubMed  CAS  Google Scholar 

  • Kulakova L, Singer SM, Conrad J, and Nash TE (2006) Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Mol Microbiol 61: 1533–1542

    Article  PubMed  CAS  Google Scholar 

  • Lauwaet T, Andersen Y, Van de Ven L, Eckmann L, and Gillin FD (2010) Rapid detachment of Giardia lamblia trophozoites as a mechanism of antimicrobial action of the isoflavone formononetin. J Antimicrob Chemother 65: 531–534

    Article  PubMed  CAS  Google Scholar 

  • Lechtreck KF and Melkonian M (1991) Striated microtubuleassociated fibers: identification of assemblin, a novel 34-kD protein that forms paracrystals of 2-nm filaments in vitro. J Cell Biol 115: 705–716

    Article  PubMed  CAS  Google Scholar 

  • Leitch GJ, Visvesvara GS, Wahlquist SP, and Harmon CT (1989) Dietary fiber and giardiasis: dietary fiber reduces rate of intestinal infection by Giardia lamblia in the gerbil. Am J Trop Med Hyg 41: 512–520

    PubMed  CAS  Google Scholar 

  • Lev B, Ward H, Keusch GT, and Pereira ME (1986) Lectin activation in Giardia lamblia by host protease: a novel hostparasite interaction. Science 232: 71–73

    Article  PubMed  CAS  Google Scholar 

  • Li E, Zhao A, Shea-Donohue T, and Singer SM (2007) Mast cell-mediated changes in smooth muscle contractility during mouse giardiasis. Infect Imun 75: 4514–4518

    Article  CAS  Google Scholar 

  • Liu K, and Shih NY (2007) The role of enolase in tissue invasion and metastasis of pathogens and tumor cells. J. Cancer Mol. 3: 45–48

    Google Scholar 

  • Magne D, Favennec L, Chochillon C, Gorenflot A, Meillet D, Kapel N, Raichvarg D, Savel J, and Gobert JG (1991) Role of cytoskeleton and surface lectins in Giardia duodenalis attachment to Caco2 cells. Parasitol Res 77: 659–662

    Article  PubMed  CAS  Google Scholar 

  • McCabe RE, Yu GS, Conteas C, Morrill PR, and McMorrow B (1991) In vitro model of attachment of Giardia intestinalis trophozoites to IEC-6 cells, an intestinal cell line. Antimicrob Agents Chemother 35: 29–35

    Article  PubMed  CAS  Google Scholar 

  • Minotto L, Tutticci EA, Bagnara AS, Schofield PJ, and Edwards MR (1999) Characterisation and expression of the carbamate kinase gene from Giardia intestinalis. Mol Biochem Parasitol 98(1): 43–51. PubMed PMID: 10029308

    Article  PubMed  CAS  Google Scholar 

  • Mohammed SR and Faubert GM (1995) Disaccharidase deficiencies in Mongolian gerbils (Meriones unguiculatus) protected against Giardia lamblia. Parasitol Res 81: 582–590

    Article  PubMed  CAS  Google Scholar 

  • Morgan RO and Fernández MP (1995) Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia. Mol Biol Evol 12: 967–979

    PubMed  CAS  Google Scholar 

  • Morgan RO and Fernández MP (1997) Annexin gene structures and molecular evolutionary genetics. Cell Mol Life Sci 53: 508–515

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, and Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science (New York, NY) 317: 1921–1926

    Article  CAS  Google Scholar 

  • Muller N and von Allmen N (2005) Recent insights into the mucosal reactions associated with Giardia lamblia infections. Int J Parasitol 35: 1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Narcisi EM, Paulin JJ, and Fechheimer M (1994) Presence and localization of vinculin in Giardia. J Parasitol 80: 468–473

    Article  PubMed  CAS  Google Scholar 

  • Nash TE (2002) Surface antigenic variation in Giardia lamblia. Mol Microbiol 45: 585–590

    Article  PubMed  CAS  Google Scholar 

  • Nash TE, Gillin FD, and Smith PD (1983) Excretory-secretory products of Giardia lamblia. J Immunol 131: 2004–2010

    PubMed  CAS  Google Scholar 

  • Nash TE, Herrington DA, Losonsky GA, and Levine MM (1987) Experimental human infections with Giardia lamblia. J Infect Dis 156: 974–984

    Article  PubMed  CAS  Google Scholar 

  • Nash TE and Keister DB (1985) Differences in excretory-secretory products and surface antigens among 19 isolates of Giardia. J Infect Dis 152: 1166–1171

    Article  PubMed  CAS  Google Scholar 

  • Nohria A, Alonso RA, and Peattie DA (1992) Identification and characterization of gamma-giardin and the gamma-giardin gene from Giardia lamblia. Mol Biochem Parasitol 56: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Ochoa TJ and Cleary TG (2009) Effect of lactoferrin on enteric pathogens. Biochimie 91: 30–34

    Article  PubMed  CAS  Google Scholar 

  • Oberhuber G, Kastner N, and Stolte M (1997) Giardiasis: a histologic analysis of 567 cases. Scand J Gastroenterol 32: 48–51

    Article  PubMed  CAS  Google Scholar 

  • Palm JE, Weiland ME, Griffiths WJ, Ljungström I, and Svärd SG (2003) Identification of immunoreactive proteins during acute human giardiasis. J Infect Dis 187: 1849–1859

    Article  PubMed  CAS  Google Scholar 

  • Palm D, Weiland M, McArthur AG, Winiecka-Krusnell J, Cipriano MJ, Birkeland SR, Pacocha SE, Davids B, Gillin F, Linder E, and Svard S (2005) Developmental changes in the adhesive disk during Giardia differentiation. Mol Biochem Parasitol 141: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Panaro M, Cianciulli A, Mitolo V, Mitolo CI, Acquafredda A, Brandonisio O, and Cavallo P (2007) Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol Med Microbiol 51: 302–309

    Article  PubMed  CAS  Google Scholar 

  • Pancholi V (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol. Life Sci 58: 902–920

    Article  PubMed  CAS  Google Scholar 

  • Parenti DM (1989) Characterization of a thiol proteinase in Giardia lamblia. J Infect Dis 160: 1076–1080

    Article  PubMed  CAS  Google Scholar 

  • Peattie DA, Alonso RA, Hein A, and Caulfield JP (1989) Ultrastructural localization of giardins to the edges of disk microribbons of Giardia lamblia and the nucleotide and deduced protein sequence of alpha giardin. J Cell Biol 109: 2323–2335

    Article  PubMed  CAS  Google Scholar 

  • Pegado MG and de Souza W (1994) Role of surface components in the process of interaction of Giardia duodenalis with epithelial cells in vitro. Parasitol Res 80: 320–326

    Article  PubMed  CAS  Google Scholar 

  • Potoka DA, Upperman JS, Zhang XR, Kaplan JR, Corey SJ, Grishin A, Zamora R, and Ford HR (2003) Peroxynitrite inhibits enterocyte proliferation and modulates Src kinase activity in vitro. Am J Physiol (Gastrointest Liver Physiol) 285: G861–G869

    CAS  Google Scholar 

  • Prucca CG, Slavin I, Quiroga R, Elías EV, Rivero FD, Saura A, Carranza PG, Luján HD (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456: 750–754

    Article  PubMed  CAS  Google Scholar 

  • Rayan P, Stenzel D, and McDonnell PA (2005) The effects of saturated fatty acids on Giardia duodenalis trophozoites in vitro. Parasitol Res 97: 191–200

    Article  PubMed  Google Scholar 

  • Ringqvist E, Palm JE, Skarin H, Hehl AB, Weiland M, Davids BJ, Reiner DS, Griffiths WJ, Eckmann L, Gillin FD, and Svard SG (2008) Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol 159: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Fuentes GB, Cedillo-Rivera R, Fonseca-Liñán R, Argüello-García R, Munoz O, Ortega-Pierres G, and Yepez-Mulia L (2006) Giardia duodenalis: analysis of secreted proteases upon trophozoite-epithelial cell interaction in vitro. Mem Inst Oswaldo Cruz 101: 693–696

    Article  PubMed  Google Scholar 

  • Rohrer L, Winterhalter KH, Eckert J, and Kohler P (1986) Killing of Giardia lamblia by human milk is mediated by unsaturated fatty acids. Antimicrob Agents Chemother 30: 254–257

    Article  PubMed  CAS  Google Scholar 

  • Roskens H and Erlandsen SL (2002) Inhibition of in vitro attachment of Giardia trophozoites by mucin. J Parasitol 88: 869–873

    PubMed  CAS  Google Scholar 

  • Roxstrom-Lindquist K, Palm D, Reiner D, Ringqvist E, and Svard SG (2006) Giardia immunity — an update. Trends Parasitol 22: 26–31

    Article  PubMed  CAS  Google Scholar 

  • Samra HK, Ganguly NK, and Mahajan RC (1991) Human milk containing specific secretory IgA inhibits binding of Giardia lamblia to nylon and glass surfaces. J Diarrhoeal Dis Res 9: 100–103

    PubMed  CAS  Google Scholar 

  • Scott KG, Logan MR, Klammer GM, Teoh DA, and Buret AG (2000) Jejunal brush border microvillous alterations in Giardia muris-infected mice: role of T lymphocytes and interleukin-6. Infect Immun 68: 3412–3418

    Article  PubMed  CAS  Google Scholar 

  • Scott KG, Yu LC, and Buret AG (2004) Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect Immun 72: 3536–3542

    Article  PubMed  CAS  Google Scholar 

  • Segovia-Gamboa NC, Chávez-Munguía B, Medina-Flores Y, Cázares-Raga FE, Hernández-Ramírez VI, Martínez-Palomo A, Talamás-Rohana P (2010) Entamoeba invadens, encystation process and enolase. Exp Parasitol 125: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Shant J, Bhattacharyya S, Ghosh S, Ganguly NK, and Majumdar S (2002) A potentially important excretory-secretory product of Giardia lamblia. Exp Parasitol 102: 178–186

    Article  PubMed  CAS  Google Scholar 

  • Shant J, Ghosh S, Bhattacharyya S, Ganguly NK, and Majumdar S (2005) Mode of action of a potentially important excretory — secretory product from Giardia lamblia in mice enterocytes. Parasitology 131: 57–69

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Lucas JJ, Hayes GR, Kumar I, Beach DH, Frajblat M, Gilbert RO, Sommer U, and Costello CE (2004) Tritrichomonas foetus induces apoptotic cell death in bovine vaginal epithelial cells. Infect Immun 72: 4151–4158

    Article  PubMed  CAS  Google Scholar 

  • Sommer U, Costello C, Hayes G, Beach D, Gilbert R, Lucas J, and Singh B (2005) Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J Biol Chem 280: 23853–23860

    Article  PubMed  CAS  Google Scholar 

  • Sousa MC, Goncalves CA, Bairos VA, and Poiares-Da-Silva J (2001) Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells. Clin Diagn Lab Immunol 8: 258–265

    PubMed  CAS  Google Scholar 

  • Sterk M, Müller J, Hemphill A, and Müller N (2007) Characterization of a Giardia lamblia WB C6 clone resistant to the isoflavone formononetin. Microbiology 153 4150–4158

    Article  PubMed  CAS  Google Scholar 

  • Steuart RF, O’Handley R, Lipscombe RJ Lock RA, and Thompson RC (2008) Alpha 2 giardin is an assemblage A-specific protein of human infective Giardia duodenalis. Parasitology 135: 1621–1627

    Article  PubMed  CAS  Google Scholar 

  • Sun H (2006) The interaction between pathogens and the host coagulation system. Physiology 21: 281–288

    Article  PubMed  CAS  Google Scholar 

  • Szkodowska A, Müller MC, Linke C, and Scholze H (2002) Annexin XXI (ANX21) of Giardia lamblia has sequence motifs uniquely shared by giardial annexins and is specifically localized in the flagella. J Biol Chem 277: 25703–25706

    Article  PubMed  CAS  Google Scholar 

  • Teoh DA, Kamieniecki D, Pang G, and Buret AG (2000) Giardia lamblia rearranges F-actin and α-actinin in human colonic and duodenal monolayers and reduces transepithelial electrical resistance. J Parasitol 86: 800–806

    PubMed  CAS  Google Scholar 

  • Troeger H, Epple H, Schneider T, Wahnschaffe U, Ullrich R, Burchard G, Jelinek T, Zeitz M, Fromm M, and Schulzke J (2007) Effect of chronic Giardia lamblia infection on epi-thelial transport and barrier function in human duodenum. Gut 56: 328–335

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Ropolo AS, Rivero MR, Vranych CV, Conrad JT, Svard SG, and Nash TE (2008) Arginine deiminase has multiple regulatory roles in the biology of Giardia lamblia. J Cell Sci 121: 2930–2938

    Article  PubMed  CAS  Google Scholar 

  • Tovy A, Siman Tov R, Gaentzsch R, Helm M, and Ankri S (2010) A new nuclear function of the entamoeba histolytica glycolytic enzyme enolase: The metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity. PLoS Pathogens 6: e1000775

    Article  PubMed  CAS  Google Scholar 

  • Upcroft JA, McDonnell PA, Gallagher AN, Chen N, and Upcroft P (1997) Lethal Giardia from a wild-caught sulphur-crested cockatoo (Cacatua galerita) established in vitro chronically infects mice. Parasitology 114: 407–412

    Article  PubMed  Google Scholar 

  • Valentijn AJ, Zouq N, and Gilmore AP (2004) Anoikis. Biochem Soc Trans 32: 421–425

    Article  PubMed  CAS  Google Scholar 

  • Vrancken G, Rimaux T, Wouters D, Leroy F, and De Vuyst L (2009) The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. Food Microbiol 26: 720–727

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Geisler N, Plessmann U, Bremerich A, Lechtreck KF, and Melkonian M (1993) SF-assemblin, the structural protein of the 2-nm filaments from striated microtubule associated fibers of algal flagellar roots, forms a segmented coiled coil. J Cell Biol 121: 837–845

    Article  PubMed  CAS  Google Scholar 

  • Weiland ME, McArthur AG, Morrison HG, Sogin ML, and Svärd SG (2005) Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. In J Parasitol 35: 617–626

    CAS  Google Scholar 

  • Weiland ME, Palm JE, Griffiths WJ, McCaffery JM, and Svard SG (2003) Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int J Parasitol 33: 1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Williams AG and Coombs GH (1995) Multiple protease activities in Giardia intestinalis trophozoites. Int J Parasitol 25: 771–778

    Article  PubMed  CAS  Google Scholar 

  • Yarlett N, Martinez MP, Moharrami MA, and Tachezy J (1996) The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 78: 117–125

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Huang C, Kuo W, Sayer H, Turner J, and Buret A (2008) SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol 38: 923–934

    Article  PubMed  CAS  Google Scholar 

  • Zenian A and Gillin FD (1985) Interactions of Giardia lamblia with human intestinal mucus: enhancement of trophozoite attachment to glass. J Protozool 32: 664–668

    PubMed  CAS  Google Scholar 

  • Zheng X, Uno T, Goto T, Zhang W, Hill JH, and Ohashi Y (2004) Pathogenic acanthamoeba induces apoptosis of human corneal epithelial cells. Jpn J Ophthalmol 48: 23–29

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Ortega-Pierres, G., Bazán-Tejeda, M.L., Fonseca-Liñán, R., Bermúdez-Cruz, R.M., Argüello-García, R. (2011). Interaction of Giardia with Host Cells. In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_17

Download citation

Publish with us

Policies and ethics