Advertisement

Molecular tools in drug research — translational medicine

  • Sandra Eder
  • Volker Wacheck
Chapter
  • 2.2k Downloads

2

The advent of high-throughput and increasingly sensitive research techniques in molecular biology in the last 20 years has altered fundamentally our understanding of molecular biology. The unraveling of the human genome has provided unprecedented insights into the molecular pathophysiology of diseases. DNA sequencing techniques allowed collecting huge amounts of genetic information, revealing genetic variation and variable expression of genes pinpointing to the molecular level of diseases. In parallel, analytical methods for evaluating large sets of proteins become available facilitating studies on the functional relevance of transient or stable expression of these molecules for a disease phenotype. These novel molecular techniques are nowadays at the heart of modern drug research as they allow identifying and validating novel molecular targets of disease, drug screening as well as the discovery of biomarkers for predicting and monitoring response to drug therapy.

Keywords

Translational medicine target identification target validation target deconvolution SAGE (serial analysis of gene expression) cloning sequencing phage display transfection yeast two hybrid mass spectrometry knock-out animal Cre/lox system FISH PCR FACS Blotting Western/Northern ACE2 

References

  1. 1.
    Terstappen GC, Schlupen C, Raggiaschi R, Gaviraghi G (2007) Target deconvolution strategies in drug discovery. Nat Rev Drug Discov 6: 891–903PubMedCrossRefGoogle Scholar
  2. 2.
    Pantel K, Alix-Panabieres C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6: 339–351PubMedCrossRefGoogle Scholar
  3. 3.
    Bertolini F, Mancuso P, Shaked Y, Kerbel RS (2007) Molecular and cellular biomarkers for angiogenesis in clinical oncology. Drug Discov Today 12: 806–812PubMedCrossRefGoogle Scholar
  4. 4.
    Skeggs LT Jr, Kahn JR, Shumway NP (1956) The preparation and function of the hypertensinconverting enzyme. J Exp Med 103: 295–299PubMedCrossRefGoogle Scholar
  5. 5.
    Ferreira SH, Greene LH, Alabaster VA, Bakhle YS, Vane JR (1970) Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme. Nature 225: 379–380PubMedCrossRefGoogle Scholar
  6. 6.
    Donoghue M, Hsieh F, Baronas E, et al. (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87: E1–E9PubMedGoogle Scholar
  7. 7.
    Crackower MA, Sarao R, Oudit GY, et al. (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417: 822–828PubMedCrossRefGoogle Scholar
  8. 8.
    Wong DW, Oudit GY, Reich H, et al. (2007) Loss of angiotensin-converting enzyme-2 (ACE2) accelerates diabetic kidney injury. Am J Pathol 171: 438–451PubMedCrossRefGoogle Scholar
  9. 9.
    Kuba K, Imai Y, Rao S, et al. (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11: 875–879PubMedCrossRefGoogle Scholar
  10. 10.
    Imai Y, Kuba K, Rao S, et al. (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436: 112–116PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2010

Authors and Affiliations

  • Sandra Eder
    • 1
  • Volker Wacheck
    • 1
  1. 1.Department of Clinical PharmacologyMedical University of ViennaViennaAustria

Personalised recommendations