Advertisement

On the Stabilization of Finite Element Approximations of the Stokes Equations

  • F. Brezzi
  • J. Pitkäranta
Part of the Notes on Numerical Fluid Mechanics book series (NNFM, volume 10)

Abstract

Consider finite element approximation of the Stokes equations. We present a systematic way of stabilizing it by adding bubble functions to the discrete velocity field. Another way of stabilization is also presented where the finite element spaces are kept unchanged but the discrete incompressibility condition is modified instead.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations, Preprint (1983), University of Pavia.Google Scholar
  2. [2]
    I. Babuška, Error bounds for the finite element method, Numer. Math. 16 (1971), pp. 322–333.zbMATHGoogle Scholar
  3. [3]
    F. Brezzi, On the existence uniqueness and approximation of saddle point problems arising from Lagrange multipliers, R.A.I.R.O Anal. Numér. 2 (1974), pp. 129–151.MathSciNetGoogle Scholar
  4. [4]
    P. Clement, Approximation by finite element functions using local regularization, R.A.I.R.O Anal. Numér. 9 R-2 (1975), pp. 77–84.Google Scholar
  5. [5]
    M. Croùzeix, P.-A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O Anal. Numér. 7 R-3 (1977), pp. 33–76.Google Scholar
  6. [6]
    M. Fortin, An analysis of the convergence of mixed finite element methods, R.A.I.R.O Anal. Numér. 11 R-3 (1977), pp. 341–354.Google Scholar
  7. [7]
    J. Pitkäranta, A multigrid version of a simple finite element method for the Stokes problem, to appear.Google Scholar
  8. [8]
    R. Stenberg, Analysis of mixed finite element methods for the Stokes problem: a unified approach, to appear in Math. Comp.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1984

Authors and Affiliations

  • F. Brezzi
    • 1
  • J. Pitkäranta
    • 2
  1. 1.Dipartimento di Meccanica StrutturaleUniv. of Pavia and Institutio di Analisi Numerica del C.N.R.PaviaItaly
  2. 2.Institute of MathematicsHelsinki University of TechnologyEspoo 15Finland

Personalised recommendations