Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems

  • Herbert Amann
Part of the Teubner-Texte zur Mathematik book series (TTZM, volume 133)


It is the purpose of this paper to describe some of the recent developments in the mathematical theory of linear and quasilinear elliptic and parabolic systems with nonhomogeneous boundary conditions. For illustration we use the relatively simple set-up of reaction-diffusion systems which are — on the one h and — typical for the whole class of systems to which the general theory applies and — on the other h and — still simple enough to be easily described without too many technicalities. In addition, quasilinear reaction-diffusion equations are of great importance in applications and of actual mathematical and physical interest, as is witnessed by the examples we include.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AcT85]
    P. Acquistapace, B. Terreni. On the abstract non-autonomous Cauchy problem in the case of constant domains. Ann. Mat. Pura Appl. (4), 140 (1985), 1–55.MathSciNetzbMATHGoogle Scholar
  2. [AcT86]
    P. Acquistapace, B. Terreni. Linear parabolic equations in Banach spaces with variable domain but constant interpolation spaces. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 13 (1986), 75–107.Google Scholar
  3. [AcT87]
    P. Acquistapace, B. Terreni. A unified approach to abstract linear non-autonomous parabolic equations. Rend. Sem. Mat. Univ. Padova, 78 (1987), 47–107.MathSciNetzbMATHGoogle Scholar
  4. [Ada75]
    R.A. Adams. Sobolev Spaces. Academic Press, New York, 1975.zbMATHGoogle Scholar
  5. [AgV64]
    M.S. Agranovich, M.I. Vishik. Elliptic problems with a parameter and parabolic problems of general type. Russ. Math. Surveys, 19 (1964), 53–157.zbMATHGoogle Scholar
  6. [Ama83]
    H. Amann. Dual semigroups and second order linear elliptic boundary value problems. Israel J. Math., 45 (1983), 225–254.MathSciNetzbMATHGoogle Scholar
  7. [Ama84]
    H. Amann. Existence and regularity for semilinear parabolic evolution equations. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 11 (1984), 593–676.MathSciNetzbMATHGoogle Scholar
  8. [Ama85]
    H. Amann. Global existence for semilinear parabolic systems. J. reine angew. Math., 360 (1985), 47–83.MathSciNetzbMATHGoogle Scholar
  9. [Ama86a]
    H. Amann. Parabolic evolution equations with nonlinear boundary conditions. In F.E. Browder, editor, Nonlinear Functional Analysis and its Applications, pages 17–27, Proc. Symp. Pure Math. 45, Amer. Math. Soc., Providence, R.I., 1986.Google Scholar
  10. [Ama86b]
    H. Amann. Quasilinear evolution equations and parabolic systems. Trans. Amer. Math. Soc, 293 (1986), 191–227.MathSciNetzbMATHGoogle Scholar
  11. [Ama86c]
    H. Amann. Quasilinear parabolic systems under nonlinear boundary conditions. Arch. Rat. Mech. Anal., 92 (1986), 153–192.MathSciNetzbMATHGoogle Scholar
  12. [Ama86d]
    H. Amann. Semigroups and nonlinear evolution equations. Lin. Alg. Appl., 84 (1986), 3–32.MathSciNetzbMATHGoogle Scholar
  13. [Ama87]
    H. Amann. On abstract parabolic fundamental solutions. J. Math. Soc. Japan, 39 (1987), 93–116.MathSciNetzbMATHGoogle Scholar
  14. [Ama88a]
    H. Amann. Dynamic theory of quasilinear parabolic equations — I. Abstract evolution equations. Nonlin. Anal., T.M.ç and A., 12 (1988), 895–919.MathSciNetzbMATHGoogle Scholar
  15. [Ama88b]
    H. Amann. Parabolic evolution equations and nonlinear boundary conditions. J. Diff. Equ., 72 (1988), 201–269.MathSciNetzbMATHGoogle Scholar
  16. [Ama88c]
    H. Amann. Parabolic evolution equations in interpolation and extrapolation spaces. J. Funct. Anal., 78 (1988), 233–270.MathSciNetzbMATHGoogle Scholar
  17. [BeL76]
    J. Bergh, J. Löfström. Interpolation Spaces. An Introduction. Springer Verlag, Berlin, 1976.zbMATHGoogle Scholar
  18. [Ama89a]
    H. Amann. Dynamic theory of quasilinear parabolic systems-III. Global existence. Math. Z., 202 (1989), 219–250; Erratum 205 (1990), 331.MathSciNetzbMATHGoogle Scholar
  19. [Ama89b]
    H. Amann. Feedback stabilization of linear and semilinear parabolic systems. In Clément et al., editors, Semigroup Theory and Applications, pages 21–57, Lecture Notes Pure Appl. Math. 116, M. Dekker, New York, 1989.Google Scholar
  20. [Ama89c]
    H. Amann. Global existence and positivity for triangular quasilinear reaction-diffusion systems. 1989. Unpublished manuscript.Google Scholar
  21. [Ama90a]
    H. Amann. Dynamic theory of quasilinear parabolic equations — II. Reaction-diffusion systems. Diff. Int. Equ., 3 (1990), 13–75.MathSciNetzbMATHGoogle Scholar
  22. [Ama90b]
    H. Amann. Ordinary Differential Equations. An Introduction to Nonlinear Analysis. W. de Gruyter, Berlin, 1990.zbMATHGoogle Scholar
  23. [Ama9la]
    H. Amann. Global existence for a class of highly degenerate parabolic systems. Japan J. Indust. Appl. Math., 8 (1991), 143–151.MathSciNetzbMATHGoogle Scholar
  24. [Ama9lb]
    H. Amann. Highly degenerate quasilinear parabolic systems. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 18 (1991), 135–166.Google Scholar
  25. [Ama91c]
    H. Amann. Hopf bifurcation in quasilinear reaction-diffusion systems. In S. Busenberg, M. Martelli, editors, Delay Differential Equations and Dynamical Systems, Proceedings, Claremont 1990, pages 53–63, Lecture Notes in Math. #1475, Springer Verlag, New York, 1991.Google Scholar
  26. [Ama91d]
    H. Amann. Multiplication in Sobolev and Besov Spaces. In Nonlinear Analysis, A Tribute in Honour of G. Prodi, pages 27–50, Quaderni, Scuola Norm. Sup. Pisa, 1991.Google Scholar
  27. [Ama94]
    H. Amann. Linear and Quasilinear Parabolic Problems. 1994. Book in preparation.Google Scholar
  28. [AmR93]
    H. Amann, M. Renardy. Reaction-diffusion problems in electrolysis. Nonlin. Diff. Equ. and Appl., (1993). To appear.Google Scholar
  29. [Ang90]
    S.B. Angenent. Nonlinear analytic semiflows. Proc. Royal Soc. Edinburgh, 115A (1990), 91–107.MathSciNetzbMATHGoogle Scholar
  30. [Bai80]
    J.B. Baillon. Caractère borné de certains genérateurs de semigroupes linéaires dans les espaces de Banach. C.R. Acad. Sc. Paris, 290 (1980), 757–760.MathSciNetzbMATHGoogle Scholar
  31. [Ba176]
    A.V. Balakrishnan. Applied Functional Analysis. Springer Verlag, New York, 1976.zbMATHGoogle Scholar
  32. [BaZ90]
    P.W. Bates, S. Zheng. Inertial manifolds and inertial sets for the phase-field equations. 1990. Preprint.Google Scholar
  33. [BoS86]
    A. Boukricha, M. Sieveking. Why second order parabolic systems? Rocky Mountain J. Math., 16 (1986), 33–54.MathSciNetzbMATHGoogle Scholar
  34. [Boud87]
    G. Bourdaud. Analyse Fonctionelle dans l’Espace Euclidien. Pub. Math. Paris VII, Vol. 23, 1987.Google Scholar
  35. [Boud91]
    G. Bourdaud. Le calcul fonctionnel dans les espaces de Sobolev. Invent. Math., 104 (1991), 435–441.MathSciNetzbMATHGoogle Scholar
  36. [BouK92]
    G. Bourdaud, M.E.D. Kateb. Calcul fonctionnel dans l’espace de Sobolev fractionnaire. Math. Z., 210 (1992), 607–613.MathSciNetzbMATHGoogle Scholar
  37. [BouM91]
    G. Bourdaud, Y. Meyer. Fonctions qui opèrent sur les espaces de Sobolev. J. Funct. Anal., 97 (1991), 351–360.MathSciNetzbMATHGoogle Scholar
  38. [CDL92]
    Ph. Clément, C.J. van Duijn, S. Li. On a nonlinear elliptic-parabolic pde system in a two dimensional ground water flow problem. SIAM J. Appl. Math., 23 (1992), 836–851.zbMATHGoogle Scholar
  39. [CH*87]
    Ph. Clément, H.J.A.M. Heijmans et al. One-Parameter Semigroups. North-Holl and CWI Monograph, Amsterdam, 1987.zbMATHGoogle Scholar
  40. [ChC89]
    D.S. Cohen, R.W. Cox. A mathematical model for stress-driven diffusion in polymers. J. Polymer Sci., Part B: Polymer Physics, 27 (1989), 589–602.Google Scholar
  41. [ChW89]
    D.S. Cohen, A.B. White Jr. Sharp fronts due to diffusion and stress at the glass transition in polymers. J. Polymer Sci., Part B: Polymer Physics, 27 (1989), 1731–1747.Google Scholar
  42. [ChW91]
    D.S. Cohen, A.B. White Jr. Sharp fronts due to diffusion and viscoelastic relaxation in polymers. SIAM J. Appl. Math., 51 (1991), 472–483.MathSciNetzbMATHGoogle Scholar
  43. [CoHS89]
    F. Conrad, D. Hilhorst, T. Seidman. On a reaction-diffusion equation with a moving boundary. In P. Bénilan, M. Chipot, L.C. Evans, M. Pierre, editors, Recent advances in nonlinear elliptic and parabolic problems, pages 50–58, Pitman Research Notes in Math. #208, 1989.Google Scholar
  44. CoHS90] F. Conrad, D. Hilhorst, T. Seidman. Well-posedness of a moving boundary problem arising in a dissolution-growth process. Nonlin. Anal., T.M. and A. 15 (1990) 445–465.Google Scholar
  45. [Cra56]
    J. Crank. The Mathematics of Diffusion. Clarendon Press, Oxford, 1956.zbMATHGoogle Scholar
  46. [Cra84]
    J. Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, 1984.zbMATHGoogle Scholar
  47. [DaK92]
    D. Daners, P. Koch Medina. Abstract Evolution Equations, Periodic Problems and Applications. Pitman Research Notes in Math. #279, Longman Sci. and Tech., Essex, 1992.Google Scholar
  48. [DaP84]
    G. Da Prato. Abstract differential equations and extrapolation spaces. In Infinite-Dimensional Systems, Retzhof 1988, pages 53–61, Lecture Notes in Math. #1076, Springer Verlag, Berlin, 1984.Google Scholar
  49. [DaPG79]
    G. Da Prato, P. Grisvard. Equations d’évolutions abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. (4), 120 (1979), 329–396.zbMATHGoogle Scholar
  50. [DaPG84]
    G. Da Prato, P. Grisvard. Maximal regularity for evolution equations by interpolation and extrapolation. J. Fund. Anal., 58 (1984), 107–124.zbMATHGoogle Scholar
  51. [DauL90]
    R. Dautray, J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Springer Verlag, Berlin, 1990.Google Scholar
  52. [Dav80]
    E.B. Davies. One-Parameter Semigroups. Academic Press, London, 1980.zbMATHGoogle Scholar
  53. [deF63]
    D.G. de Figueiredo. The coerciveness for forms over vector valued functions. Comm. Pure Appl. Math., 16 (1963), 63–94.MathSciNetzbMATHGoogle Scholar
  54. [deGM84]
    S.R. de Groot, P. Mazur. Non-Equilibrium Thermodynamics. Dover Publications Inc., New York, 1984.Google Scholar
  55. [Deu87]
    P. Deuring. An initial-boundary value problem for a certain density-dependent diffusion system. Math. Z., 194 (1987), 375–396.MathSciNetzbMATHGoogle Scholar
  56. [DoF87]
    G. Dore, A. Favini. On the equivalence of certain interpolation methods. Boll. UMI (7), 1-B (1987), 1227–1238.Google Scholar
  57. [DoV87]
    G. Dore, A. Venni. On the closedness of the sum of two closed operators. Math. Z., 196 (1987), 189–201.MathSciNetzbMATHGoogle Scholar
  58. [Dra88]
    A.-K. Drangeid. Das Prinzip der linearisierten Stabilität bei quasilinearen Evolutionsgleichungen. PhD thesis, Univ. Zürich, Switzerl and, 1988.Google Scholar
  59. [Dra89]
    A.-K. Drangeid. The principle of linearized stability for quasilinear parabolic evolution equations. Nonlin. Anal., T.M. and A., 13 (1989), 1091–1113.MathSciNetzbMATHGoogle Scholar
  60. [E1F87]
    A. El-Fiky. On the well-posedness of the Cauchy problem for p-parabolic systems. J. Math. Kyoto Univ., (I) 27 (1987), 569–586; (II) 28 (1988), 165–172.MathSciNetzbMATHGoogle Scholar
  61. [E1Z89]
    C.M. Elliott, S. Zheng. Global existence and stability of solutions to the phasefield equations. 1989. Preprint.Google Scholar
  62. [Esc91]
    J. Escher. Über quasilineare parabolische Systeme. PhD thesis, Univ. Zürich, Switzerl and, 1991.Google Scholar
  63. [Esc92]
    J. Escher. Nonlinear elliptic systems with dynamic boundary conditions. Math. Z., 210 (1992), 413–439.MathSciNetzbMATHGoogle Scholar
  64. [Esc93a]
    J. Escher. On the qualitative behavior of some semilinear parabolic problems. Diff. Int. Equ., (1993). To appear.Google Scholar
  65. [Esc93b]
    J. Escher. Quasilinear parabolic systems with dynamical boundary conditions. Comm. Partial Diff. Equ., (1993). To appear.Google Scholar
  66. [Esc93c]
    J. Escher. Smooth solutions of nonlinear systems with dynamic boundary conditions. In Proc. Semigroup Theory and Evol. Equ., Lecture Notes Pure Appl. Math., M. Dekker, New York, 1993. To appear.Google Scholar
  67. [FasP77]
    A. Fasano, M. Primicerio. General free-boundary problems for the heat equation, III. J. Math. Anal. Appl., 59 (1977), 1–14.MathSciNetzbMATHGoogle Scholar
  68. [FasP83]
    A. Fasano, M. Primicerio. Classical solutions of general two-phase parabolic free boundary problems in one dimension. In A. Fasano, M. Primicerio, editors, Free Boundary Problems: Theory and Applications, vol. II, pages 644–657, Pitman Research Notes in Math. #79, Pitman, London, 1983.Google Scholar
  69. [FasPK77]
    A. Fasano, M. Primicerio, S. Kamin. Regularity of weak solutions to one-dimensional two-phase Stefan problems. Ann. Mat. Pura Appl. (4), 115 (1977), 341–348.MathSciNetGoogle Scholar
  70. [Fat83]
    H.O. Fattorini. The Cauchy Problem. Addison-Wesley, Reading, Mass., 1983.zbMATHGoogle Scholar
  71. [Fra86]
    J. Franke. On the spaces Fi, of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains. Math. achr., 125 (1986), 29–68.MathSciNetzbMATHGoogle Scholar
  72. [Gey65]
    G. Geymonat. Su alcuni problemi ai limiti per i sistemi lineari elittici secondo Petrowsky. Le Matematiche, 20 (1965), 211–253.MathSciNetzbMATHGoogle Scholar
  73. [Gia83]
    M. Giaquinta. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton Univ. Press, Princeton, N.J., 1983.Google Scholar
  74. [GiM87]
    M. Giaquinta, G. Modica. Local existence for quasilinear parabolic systems under nonlinear boundary conditions. Ann. Mat. Pura Appl., 149 (1987), 41–59.MathSciNetzbMATHGoogle Scholar
  75. [GiS81]
    M. Giaquinta, M. Struwe. An optimal regularity result for a class of quasilinear parabolic systems. Manuscripta Math., 36 (1981), 223–239.MathSciNetzbMATHGoogle Scholar
  76. [Goe92]
    M. Goebel. Continuity and Fréchet-differentiabilty of Nemytskii operators in Hölder spaces. Mh. Math., 113 (1992), 107–119.MathSciNetzbMATHGoogle Scholar
  77. [GoKT92]
    H. Goldberg, W. Kampowsky, F. Tröltzsch. On Nemytskii operators in Lp-spaces of abstract functions. Math. Nachr., 155 (1992), 127–140.MathSciNetzbMATHGoogle Scholar
  78. [Go185]
    J.A. Goldstein. Semigroups of Linear Operators and Applications. Oxford Univ. Press, Oxford, 1985.Google Scholar
  79. [Gri69]
    P. Grisvard. Équations différentielles abstraites. Ann. Sc. Éc. Norm. Sup., Sér. 4 (1969), 311–395.MathSciNetGoogle Scholar
  80. [Gro87]
    M. Grobbelaar-Van Dalsen. Semilinear evolution equations and fractional powers of a closed pair of operators. Proc. Royal Soc. Edinburgh, 105A (1987), 101–115.zbMATHGoogle Scholar
  81. [Grö89]
    K. Gröger. A WI,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann., 283 (1989), 679–687.MathSciNetzbMATHGoogle Scholar
  82. [Grö92]
    K. Gröger. W1’ -estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators. Nonlin. Anal., T.M. and A., 18 (1992), 569–577.Google Scholar
  83. [GrR89]
    K. Gröger, J. Rehberg. Resolvent estimates in W-1°p for second order elliptic differential equations in case of mixed boundary conditions. Math. Ann., 285 (1989), 105–113.MathSciNetzbMATHGoogle Scholar
  84. [Gui90]
    D. Guidetti. A maximal regularity result with applications to parabolic problems with nonhomogeneous boundary conditions. Rend. Sem. Mat. Univ. Padova, 84 (1990), 1–37.MathSciNetzbMATHGoogle Scholar
  85. [Gui9la]
    D. Guidetti. Abstract linear parabolic problems with nonhomogeneous boundary conditions. In Ph. Clément, E. Mitidieri, B. de Pagter, editors, Semigroup Theory and Evolution Equations, pages 227–242, M. Dekker, New York, 1991.Google Scholar
  86. [Gui9lb]
    D. Guidetti. On interpolation with boundary conditions. Math. Z., 207 (1991), 439–460.MathSciNetzbMATHGoogle Scholar
  87. [Hen81]
    D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. #840, Springer Verlag, Berlin, 1981.Google Scholar
  88. [Hin88]
    T. Hintermann. Evolutionsgleichungen mit dynamischen R and bedingungen. PhD thesis, Univ. Zürich, Switzerl and, 1988.Google Scholar
  89. [Hin89]
    T. Hintermann. Evolution equations with dynamic boundary conditions. Proc. Royal Soc. Edinburgh, 113A (1989), 43–60.MathSciNetzbMATHGoogle Scholar
  90. [Jam70]
    G. Jameson. Ordered Linear Spaces. Lecture Notes in Math. #141, Springer Verlag, Berlin, 1970.Google Scholar
  91. [JaM91]
    B. Jawerth, M. Milman. Extrapolation Theory with Applications. Memoirs AMS, Vol. 89, #440, 1991.Google Scholar
  92. [KaE80]
    J. Kacur. Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions. Math. Slovaca, 30 (1980), 213–237.MathSciNetzbMATHGoogle Scholar
  93. [Kim84]
    J.U. Kim. Smooth solutions to a quasilinear system of diffusion equations for a certain population model. Nonlin. Anal., T.M.é.M., 8 (1984), 1121–1144.zbMATHGoogle Scholar
  94. [Koc92]
    P. Koch Medina. Feedback stabilization of time-periodic parabolic equations. PhD thesis, Univ. Zürich, Switzerl and, 1992.Google Scholar
  95. [Kra64]
    M.A. Krasnosel’skii. Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford, 1964.Google Scholar
  96. [KuJF77]
    A. Kufner, O. John, S. Fucik. Function Spaces. Academia, Prague, 1977.zbMATHGoogle Scholar
  97. [LadSU68]
    O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva. Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Transl. Math. Monographs, Providence, R.I., 1968.Google Scholar
  98. [LadU65]
    O.A. Ladyzenskaja, N.N. Ural’ceva. A boundary value problem for linear and quasi-linear parabolic equations. Amer. Math. Soc. Transl., Ser. 2, 47 (1965), 217–299.Google Scholar
  99. [LadU66]
    O.A. Ladyzenskaja, N. N. Ural’ceva. A boundary value problem for linear and quasi-linear equations and systems of parabolic type. III. Amer. Math. Soc. Transi., Ser. 2, 56 (1966), 103–192.Google Scholar
  100. [New68]
    J. Newman. Engineering design of electrochemical systems. Indust. Engineering Chemistry, 60 (1968), 12–27.Google Scholar
  101. [LadU67]
    O.A. Ladyzenskaja, N.N. Ural’ceva. On the Hölder continuity of solutions and their derivatives for linear and quasi-linear equations of elliptic and parabolic types. Amer. Math. Soc. Transl., Ser. 2, 61 (1967), 207–269.Google Scholar
  102. [Las80]
    I. Lasiecka. Unified theory for abstract parabolic boundary problems — a semigroup approach. Appl. Math. Optim., 6 (1980), 287–333.MathSciNetzbMATHGoogle Scholar
  103. [Li92]
    S. Li. Quasilinear evolution problems. PhD thesis, TH Delft, Holl and, 1992.Google Scholar
  104. [Lio69]
    J.-L. Lions. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, 1969.Google Scholar
  105. LiM60] J.-L. Lions, E. Magenes. Problemi ai limiti non omogenei (I–VII). Ann. Scuola Norm. Sup. Pisa, (I) 14 (1960), 259–308; (III) 15 (1961), 39–101; (IV) 15 (1961), 311–326; (V) 16 (1962), 1–44. Ann. Inst. Fourier, (II) 11 (1961), 137–178. J. d’Analyse Math., (VI) 11 (1963), 165–188. Ann. Mat. Pura Appl. 4, (VII) 63 (1963), 201–224.Google Scholar
  106. [LiM72]
    J.-L. Lions, E. Magenes. Non-Homogeneous Boundary Value Problems and Applications I, II, III. Springer Verlag, Berlin, 1972, 1973.Google Scholar
  107. [Liu89]
    Gui-Zhang Liu. Evolution Equations and Scales of Banach Spaces. PhD thesis, Univ. Eindhoven, Holl and, 1989.Google Scholar
  108. [Lun87]
    A. Lunardi. On the local dynamical system associated to a fully nonlinear abstract parabolic equation. In V. Lakshmikantam, editor, Nonl. Analysis and Appl., pages 319–326, M. Dekker, New York, 1987.Google Scholar
  109. [Lun89]
    A. Lunardi. Maximal space regularity in nonhomogeneous initial boundary value parabolic problems. Num. Funct. Anal. and Optim., 10 (1989), 323–349.MathSciNetzbMATHGoogle Scholar
  110. [Lun91]
    A. Lunardi. An introduction to geometric theory of fully nonlinear parabolic equations. In T.T. Li, P. de Mottoni, editors, Qualitative Aspects and Applications of Nonlinear Evolution Equations, pages 107–131, World Scientific, Singapore, 1991.Google Scholar
  111. [LuSW92]
    A. Lunardi, E: Sinestrari, W. von Wahl. A semigroup approach to time dependent parabolic initial boundary value problems. Diff. Int. Equ. 5 (1992)., 1275–1306.Google Scholar
  112. [LuV91]
    A. Lunardi, V. Vespri. Hölder regularity in variational parabolic nonhomogeneous equations. J. Diff. Equ., 94 (1991), 1–40.MathSciNetzbMATHGoogle Scholar
  113. [MaS85]
    V.G. Maz’ya, T.O. Shaposhnikova. Theory of Multipliers in Spaces of Differentiable Functions. Pitman, Boston, 1985.zbMATHGoogle Scholar
  114. [Nag83]
    R. Nagel. Sobolev spaces and semigroups. Semesterbericht Funktionalanalysis Tübingen, (1983), 1–20.Google Scholar
  115. [Nec67]
    J. Necas. Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.zbMATHGoogle Scholar
  116. [sw92]
    P. Oswald. On the boundedness of the mapping f if in Besov spaces. (1992). Preprint.Google Scholar
  117. [Paz83]
    A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York, 1983.zbMATHGoogle Scholar
  118. [PeF90]
    O. Penrose, P.C. Fife. Thermodynamically consistent models of phase-field type for kinetics of phase transitions. Physica D, 43 (1990), 44–62.MathSciNetzbMATHGoogle Scholar
  119. [PoT90]
    M.A. Pozio, A. Tesei. Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlin. Anal., T.M. and A., 14 (1990), 657–689.MathSciNetzbMATHGoogle Scholar
  120. [PrS93]
    J. Prüss, H. Sohr. Imaginary powers of elliptic second order differential operators in LP-spaces. Hiroshima Math. J. (1993). To appear.Google Scholar
  121. [Red87]
    R. Redlinger. Pointwise a-priori bounds for strongly coupled semilinear problems. Indiana Univ. Math. J., 36 (1987), 441–454.MathSciNetzbMATHGoogle Scholar
  122. [Red89]
    R. Redlinger. Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions. Arch. Rat. Mech. Anal., 108 (1989), 281–291.MathSciNetzbMATHGoogle Scholar
  123. [Red92]
    R. Redlinger. Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics. 1992. Preprint.Google Scholar
  124. [Rhe84]
    F. Rothe. Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Math. #1072, Springer Verlag, Berlin, 1984.Google Scholar
  125. [RMK86]
    I. Rousar, K. Micka, A. Kimla. Electrochemical Engineering. Elsevier, Amsterdam, 1986.Google Scholar
  126. [Rub7l]
    L.I. Rubinstein. The Stefan Problem. Amer. Math. Soc., Transi. Math. Monographs, Providence, R.I., 1971.Google Scholar
  127. [Run86]
    Th. Runst. Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type. Anal. Math., 12 (1986), 313–346.MathSciNetzbMATHGoogle Scholar
  128. [Sad91]
    T. Sadamatsu. A property of an analytic semigroup. J. Math. Kyoto Univ., 31 (1991), 931–936.MathSciNetzbMATHGoogle Scholar
  129. [Sch71]
    H.H. Schaefer. Topological Vector Spaces. Springer Verlag, New York, 1971.Google Scholar
  130. [See71]
    R. Seeley. Norms and domains of the complex powers A.B. Amer. J. Math., 93 (1971), 299–309.MathSciNetzbMATHGoogle Scholar
  131. [See72]
    R. Seeley. Interpolation in LP with boundary conditions. Stud. Math., 44 (1972), 47–60.MathSciNetzbMATHGoogle Scholar
  132. [ShKT79]
    N. Shigesada, K. Kawasaki, E. Teramoto. Spacial segregation of interacting species. J. theor. Biology, 79 (1979), 83–99.MathSciNetGoogle Scholar
  133. [Sho74]
    R. Showalter. Degenerate evolution equations. Indiana Univ. Math. J., 23 (1974), 655–677.MathSciNetzbMATHGoogle Scholar
  134. [Tai91]
    K. Taira. Boundary Value Problems and Markov Processes. Lecture Notes in Math. #1499, Springer Verlag, Berlin, 1991.Google Scholar
  135. Sic86] W. Sickel. On pointwise multipliers in Besov-Triebel-Lizorkin spaces. In B.W.Google Scholar
  136. Schulze, H. Triebei, editors, Seminar Analysis, pages 45–103, Teubner, Leipzig, 1986.Google Scholar
  137. [Sic89]
    W. Sickel. On boundedness of superposition operators in spaces of Triebel-Lizorkin type. Czechoslovak Math. J., 39 (1989), 323–347.MathSciNetGoogle Scholar
  138. [Sic92]
    W. Sickel. Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ., Partial Dif Equ., 27 (1992), 481–497.MathSciNetGoogle Scholar
  139. [Sic93]
    W. Sickel. Pointwise multiplication in Triebel-Lizorkin spaces. Forum Math., 5 (1993), 73–91.MathSciNetzbMATHGoogle Scholar
  140. [Sim72]
    C.G. Simader. On Dirichlet’s Boundary Value Problem. Lecture Notes in Math. #268, Springer Verlag, 1972.Google Scholar
  141. [Sit92]
    G. Simonett. Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen. PhD thesis, Univ. Zürich, Switzerl and, 1992.Google Scholar
  142. [Sit93a]
    G. Simonett. Center manifolds for quasilinear reaction-diffusion systems. 1993. Preprint.Google Scholar
  143. [Sit93b]
    G. Simonett. Quasilinear parabolic equations and semiflows. In Proc. SemigroupTheory ê4 Evol. Equ., Lecture Notes Pure Appl. Math., M. Dekker, New York, 1993. To appear.Google Scholar
  144. [S1H72]
    M.G. Slinko, K. Hartmann. Methoden und Programme zur Berechnung chemischer Reaktoren. Akademie Verlag, Berlin, 1972.Google Scholar
  145. [Sob64]
    P.E. Sobolevskii. Coerciveness inequalities for abstract parabolic equations. Soviet Math. (Doklady), 5 (1964), 894–897.Google Scholar
  146. [Sob66]
    P.E. Sobolevskii. Equations of parabolic type in a Banach space. Amer. Math. Soc. Transi., Ser. 2, 49 (1966), 1–62.Google Scholar
  147. [So165]
    V.A. Solonnikov. On boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math., 83 (1965), 1184.Google Scholar
  148. [SpZ92]
    J. Sprekels, S. Zheng. Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J. Math. Anal. Appl., (1992). To appear.Google Scholar
  149. [StJM86]
    J. Starâ, O. John, J. Mali. Counterexample to the regularity of weak solution of the quasilinear parabolic system. Commentationes Math. Univ. Carolina e, 27 (1986), 123–136.zbMATHGoogle Scholar
  150. [Str84]
    M. Struwe. A counterexample in regularity theory for parabolic systems. Czechoslovak Math. J., 34 (1984), 183–188.MathSciNetGoogle Scholar
  151. [Wei80]
    F.B. Weissler. Local existence and nonexistence for semilinear parabolic equations in L“. Indiana Univ. Math. J., 29 (1980), 79–102.MathSciNetzbMATHGoogle Scholar
  152. [Tan60]
    H. Tanabe. On the equation of evolution in a Banach space. Osaka Math. J., 12 (1960), 363–376.MathSciNetzbMATHGoogle Scholar
  153. [Tan79]
    H. Tanabe. Equations of Evolution. Pitman, London, 1979.zbMATHGoogle Scholar
  154. [Tar88]
    D.A. Tarzia. A bibliography on moving-free boundary problems for the heatdiffusion equation. The Stefan problem. Progetto Nazionale M.P.I.: Equ. evol. e appl. fisico-mat., Firenze, 1988.Google Scholar
  155. [Ter89]
    B. Terreni. Non-homogeneous initial-boundary value problems for linear parabolic systems. Stud. Math., 92 (1989), 141–175.MathSciNetzbMATHGoogle Scholar
  156. [Tri78]
    H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North Holl and, Amsterdam, 1978.Google Scholar
  157. [Tri83]
    H. Triebel. Theory of Function Spaces. Birkhäuser, Basel, 1983.Google Scholar
  158. [Tri92]
    H. Triebel. Function Spaces II. Birkhäuser, Basel, 1992.zbMATHGoogle Scholar
  159. [Trig80]
    R. Triggiani. Boundary feedback stabilizability of parabolic equations. Appl. Math. Optim., 6 (1980), 201–220.MathSciNetzbMATHGoogle Scholar
  160. [Vai64]
    M.M. Vainberg. Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, 1964.zbMATHGoogle Scholar
  161. [Ves88]
    V. Vespri. The functional space C-1,a and analytic semigroups. Diff. Int. Equ., 1 (1988), 473–493.MathSciNetzbMATHGoogle Scholar
  162. [Ves89]
    V. Vespri. Analytic semigroups generated in H—m,p by elliptic variational operators and applications to linear Cauchy problems. In Clément et al., editors, Semigroup Theory and Applications, pages 419–431, Lecture Notes Pure Appl. Math. 116, M. Dekker, New York, 1989.Google Scholar
  163. [Ves91]
    V. Vespri. Abstract quasilinear parabolic equations with variable domains. Diff. Int. Equ., 4 (1991), 1041–1072.MathSciNetzbMATHGoogle Scholar
  164. [vW85a]
    W. von Wahl. The Equations of Navier-Stokes and Abstract Parabolic Equations. Vieweg and Sohn, Braunschweig, 1985.Google Scholar
  165. [vW85b]
    W. von Wahl. On the Cahn-Hilliard equation u’ O2u — A f (u) = 0. Delft Progress Report, 10 (1985), 291–310.MathSciNetGoogle Scholar
  166. [vW90]
    W. von Wahl. Abschätzungen für das Neumann-Problem and die Helmholtz-Zerlegung von L“. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Klasse, (1990), 9–37.Google Scholar
  167. [Wa186]
    Th. Walther. Abstrakte Sobolev-Räume und ihre Anwendungen auf die Störungstheorie für Generatoren von C o —Halbgruppen. PhD thesis, Univ. Tübingen, Germany, 1986.Google Scholar
  168. [Wie92]
    M. Wiegner. Global solutions to a class of strongly coupled parabolic systems. Math. Ann., 292 (1992), 711–727.MathSciNetzbMATHGoogle Scholar
  169. [Yag88]
    A. Yagi. Fractional powers of operators and evolution equations of parabolic type. Proc. Japan Acad., Ser. A, 64 (1988), 227–230.MathSciNetzbMATHGoogle Scholar
  170. [Yag90]
    A. Yagi. Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups. II. Funkcial Ekvac., 33 (1990), 139–150.MathSciNetzbMATHGoogle Scholar
  171. [Yag91]
    A. Yagi. Abstract quasilinear evolution equations of parabolic type in Banach spaces. Boll. UMI, 5-B (1991), 341–368.Google Scholar
  172. [Yag92]
    A. Yagi. Global solution of some quasilinear parabolic systems in population dynamics. 1992. Preprint.Google Scholar
  173. [Zhe92]
    S. Zheng. Global existence for a thermodynamically consistent model of phase field type. Dif. Int. Equ., 5 (1992), 241–253.zbMATHGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1993

Authors and Affiliations

  • Herbert Amann
    • 1
  1. 1.Universität ZürichZürichSwitzerland

Personalised recommendations