Advertisement

Distance Measurements of CAD Models in Boundary Representation

  • Ulrich KrispelEmail author
  • Dieter W. Fellner
  • Torsten Ullrich
Chapter
  • 21 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12060)

Abstract

The need to analyze and visualize distances between objects arises in many use cases. Although the problem to calculate the distance between two polygonal objects may sound simple, real-world scenarios with large models will always be challenging, but optimization techniques – such as space partitioning – can reduce the complexity of the average case significantly.

Our contribution to this problem is a publicly available benchmark to compare distance calculation algorithms. To illustrate the usage, we investigated and evaluated a grid-based distance measurement algorithm.

Keywords

Computational geometry Computer-aided design Benchmark Euclidean distance 

References

  1. 1.
    Alliez, P., Tayeb, S., Wormser, C.: 3D fast intersection and distance computation. CGAL User and Reference Manual (2016)Google Scholar
  2. 2.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77974-2CrossRefzbMATHGoogle Scholar
  4. 4.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2, 1–13 (1997)CrossRefGoogle Scholar
  5. 5.
    Blender Documentation Team: Blender 2.78 Manual. Blender Documentation Team (2017)Google Scholar
  6. 6.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Proceedings of the Eurographics Italian Chapter Conference, vol. 6, pp. 129–136 (2008)Google Scholar
  7. 7.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)CrossRefGoogle Scholar
  8. 8.
    Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 566–568 (1994)Google Scholar
  9. 9.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, vol. 23, pp. 171–180 (1996)Google Scholar
  10. 10.
    Gurret, C., Manolopoulos, Y., Papadopoulos, A.N., Rigaux, P.: The BASIS system: a benchmarking approach for spatial index structures. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 152–170. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48344-6_9CrossRefGoogle Scholar
  11. 11.
    Han, K., Feng, Y.T., Owen, D.R.J.: Performance comparisons of tree-based and cell-based contact detection algorithms. Int. J. Comput. Aided Eng. Softw. 24, 165–181 (2007)CrossRefGoogle Scholar
  12. 12.
    Jorda, L., et al.: The Shape of Comet 67P/Churyumov-Gerasimenko from Rosetta/Osiris Images. AGU Fall Meeting, vol. 47, p. P41C-3943 (2014)Google Scholar
  13. 13.
    van Kan Parker, M., Zegers, T., Kneissl, T., Ivanov, B., Foing, B., Neukum, G.: 3D structure of the Gusev Crater region. Earth Planet. Sci. Lett. 294, 411–423 (2010)CrossRefGoogle Scholar
  14. 14.
    Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Visual Comput. Graphics 4, 21–36 (1998)CrossRefGoogle Scholar
  15. 15.
    Krispel, U., Fellner, D.W., Ullrich, T.: A benchmark for distance measurements. In: Proceedings of the International Conference on Cyberworlds, pp. 120–125 (2018)Google Scholar
  16. 16.
    Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with rectangular swept sphere volumes. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3719–3726 (2000)Google Scholar
  17. 17.
    Larsson, T., Akenine-Müller, T.: Bounding volume hierarchies of slab cut balls. Comput. Graph. Forum 28, 2379–2395 (2009)CrossRefGoogle Scholar
  18. 18.
    Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Morgan Kaufmann, Burlington (2002)Google Scholar
  19. 19.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees: Theory and Applications. AI&KP. Springer, London (2006).  https://doi.org/10.1007/978-1-84628-293-5CrossRefzbMATHGoogle Scholar
  20. 20.
    Moore, A.W.: An introductory tutorial on \(k^d\)-trees. Technical report, Computer Laboratory, University of Cambridge, vol. 209, pp. 1–20 (1991)Google Scholar
  21. 21.
    Murray, J.D., vanRyper, W.: Encyclopedia of Graphics File Formats, 2nd edn. O’Reilly Media, Sebastapol (1996)Google Scholar
  22. 22.
    Quinlan, S.: Efficient distance computation between non-convex objects. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3324–3329 (1994)Google Scholar
  23. 23.
    Ray, S., Simion, B., Brown, A.D.: Jackpine: a benchmark to evaluate spatial database performance. In: Proceedings of the IEEE International Conference on Data Engineering, vol. 27, pp. 1139–1150 (2011)Google Scholar
  24. 24.
    Schneider, P., Eberly, D.H.: Geometric Tools for Computer Graphics. Morgan Kaufmann, Burlington (2002)Google Scholar
  25. 25.
    Ullrich, T., Settgast, V., Fellner, D.W.: Abstand: distance visualization for geometric analysis. Project Paper Proceedings of the Conference on Virtual Systems and MultiMedia Dedicated to Digital Heritage (VSMM), vol. 14, pp. 334–340 (2008)Google Scholar
  26. 26.
    Weller, R., Klein, J., Zachmann, G.: A model for the expected running time of collision detection using AABB trees. In: Proceedings of the Eurographics Symposium on Virtual Environments, vol. 12, pp. 11–17 (2006)Google Scholar
  27. 27.
    Weller, R., Sagardia, M., Mainzer, D., Hulin, T., Zachmann, G., Preusche, C.: A benchmarking suite for 6-DOF real time collision response algorithms. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, vol. 17, pp. 63–70 (2010)Google Scholar
  28. 28.
    Yang, S., Yong, J.H., Sun, J.G., Gu, H.J., Paul, J.C.: A cell-based algorithm for evaluating directional distances in GIS. Int. J. Geogr. Inf. Sci. 24, 577–590 (2010)CrossRefGoogle Scholar
  29. 29.
    Ytterlid, R., Shellshear, E.: BVH split strategies for fast distance queries. J. Comput. Graph. Tech. (JCGT) 4, 1–25 (2015)Google Scholar
  30. 30.
    Zalik, B., Kolingerova, I.: A cell-based point-in-polygon algorithm suitable for large sets of points. Comput. Geosci. 27, 1135–1145 (2001)CrossRefGoogle Scholar
  31. 31.
    Zomorodian, A., Edelsbrunner, H.: Fast software for box intersections. In: Proceedings of the Annual Symposium on Computational Geometry, vol. 16, pp. 129–138 (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Ulrich Krispel
    • 1
    Email author
  • Dieter W. Fellner
    • 1
    • 2
  • Torsten Ullrich
    • 1
  1. 1.Fraunhofer Austria Research GmbHTechnische Universität GrazGrazAustria
  2. 2.Fraunhofer IGDTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations