Advertisement

Human–Machine Interfaces for Motor Rehabilitation

  • Ioannis KakkosEmail author
  • Stavros-Theofanis Miloulis
  • Kostakis Gkiatis
  • Georgios N. Dimitrakopoulos
  • George K. Matsopoulos
Chapter
  • 6 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 891)

Abstract

Neurological disorders affect a large part of the population, causing cognitive and motor impairments. To that end, non-pharmacological interventions targeting support and restoration of the disrupted functions have been a major issue in modern society. New technologies enable effective communication between the affected individual and an external system, establishing the concept of a human–machine interface (HMI). This chapter seeks to describe the principles of modern noninvasive HMI systems and to present current trends regarding the methods used to capture physiological and non-physiological motor-related data in order to control external devices within a rehabilitation framework. Furthermore, in regard to classification and parameter complexity, computational intelligence tools, machine learning approaches and simulation testing are presented. The relevant applications are discussed within a taxonomy based on the nature of the motor-related source data, while methodological aspects and future challenges concerning the design of HMI systems for rehabilitation purposes are also included.

Keywords

Motor impairments Rehabilitation Human–machine interfaces Motor functions modeling Computational intelligence 

References

  1. 1.
    Health topics, (n.d.). https://www.who.int/health-topics
  2. 2.
    Restorative Neurology of Spinal Cord Injury. Oxford University Press, Oxford, New York (2011)Google Scholar
  3. 3.
    Hatem, S.M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., Bleyenheuft, Y.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 10, 442 (2016).  https://doi.org/10.3389/fnhum.2016.00442
  4. 4.
    Thibaut, A., Chatelle, C., Ziegler, E., Bruno, M.-A., Laureys, S., Gosseries, O.: Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 27, 1093–1105 (2013).  https://doi.org/10.3109/02699052.2013.804202CrossRefGoogle Scholar
  5. 5.
    Emos, M.C., Agarwal, S.: Neuroanatomy, upper motor neuron lesion. StatPearls, StatPearls Publishing, Treasure Island (FL) (2019). http://www.ncbi.nlm.nih.gov/books/NBK537305/
  6. 6.
    Dworzynski, K., Ritchie, G., Fenu, E., MacDermott, K., Playford, E.D.: Rehabilitation after stroke: summary of NICE guidance. BMJ 346, f3615 (2013).  https://doi.org/10.1136/bmj.f3615CrossRefGoogle Scholar
  7. 7.
    Nas, K., Yazmalar, L., Şah, V., Aydın, A., Öneş, K.: Rehabilitation of spinal cord injuries. World J. Orthop. 6, 8–16 (2015).  https://doi.org/10.5312/wjo.v6.i1.8CrossRefGoogle Scholar
  8. 8.
    Cathy, S., Suzanne, A., Winston, B.: Rehabilitation is initiated early after stroke, but most motor rehabilitation trials are not. Stroke 44, 2039–2045 (2013).  https://doi.org/10.1161/STROKEAHA.113.000968CrossRefGoogle Scholar
  9. 9.
    Kortte, K.B., Falk, L.D., Castillo, R.C., Johnson-Greene, D., Wegener, S.T.: The Hopkins rehabilitation engagement rating scale: development and psychometric properties. Arch. Phys. Med. Rehabil. 88, 877–884 (2007).  https://doi.org/10.1016/j.apmr.2007.03.030CrossRefGoogle Scholar
  10. 10.
    Feigin, V.L., Forouzanfar, M.H., Krishnamurthi, R., Mensah, G.A., Connor, M., Bennett, D.A., Moran, A.E., Sacco, R.L., Anderson, L., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C.M.M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., Naghavi, M., Murray, C.: Global burden of diseases, injuries, and risk factors study 2010 (GBD 2010) and the GBD stroke experts group, global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010. Lancet Lond. Engl. 383, 245–254 (2014)Google Scholar
  11. 11.
    Carbone, V., van der Krogt, M.M., Koopman, H.F.J.M., Verdonschot, N.: Sensitivity of subject-specific models to hill muscle–tendon model parameters in simulations of gait. J. Biomech. 49, 1953–1960 (2016).  https://doi.org/10.1016/j.jbiomech.2016.04.008CrossRefGoogle Scholar
  12. 12.
    Andreoni, G., Parini, S., Maggi, L., Piccini, L., Panfili, G., Torricelli, A.: Human machine interface for healthcare and rehabilitation. In: Vaidya, S., Jain, L.C., Yoshida, H. (eds.) Advanced Computational Intelligence Paradigms in Healthcare-2, pp. 131–150. Springer, Berlin, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72375-2_7
  13. 13.
    Rudisch, J., Butler, J., Izadi, H., Zielinski, I.M., Aarts, P., Birtles, D., Green, D.: Kinematic parameters of hand movement during a disparate bimanual movement task in children with unilateral Cerebral Palsy. Hum. Mov. Sci. 46, 239–250 (2016).  https://doi.org/10.1016/j.humov.2016.01.010CrossRefGoogle Scholar
  14. 14.
    Reis, P., Hebenstreit, F., Gabsteiger, F., von Tscharner, V., Lochmann, M.: Methodological aspects of EEG and body dynamics measurements during motion. Front. Hum. Neurosci. 8 (2014).  https://doi.org/10.3389/fnhum.2014.00156
  15. 15.
    Munzert, J., Lorey, B., Zentgraf, K.: Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res. Rev. 60, 306–326 (2009).  https://doi.org/10.1016/j.brainresrev.2008.12.024CrossRefGoogle Scholar
  16. 16.
    Yin, Y.H., Fan, Y.J., Xu, L.D.: EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans. Inf. Technol. Biomed. 16, 542–549 (2012).  https://doi.org/10.1109/TITB.2011.2178034CrossRefGoogle Scholar
  17. 17.
    Villa-Parra, A.C., Delisle-Rodriguez, D., Souza Lima, J, Frizera-Neto, A., Bastos, T.: Knee impedance modulation to control an active orthosis using insole sensors. Sensors 17 (2017).  https://doi.org/10.3390/s17122751
  18. 18.
    Pons, J.L.: Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag. 29, 57–63 (2010).  https://doi.org/10.1109/MEMB.2010.936548CrossRefGoogle Scholar
  19. 19.
    Bhatia, D., Bansal, G., Tewari, R.P., Shukla, K.K.: State of art: functional electrical stimulation (FES), Int. J. Biomed. Eng. Technol. 5, 77–99 (2011).  https://doi.org/10.1504/ijbet.2011.038474
  20. 20.
    Dzahir, M.A.M., Yamamoto, S.: Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 3, 120–148 (2014).  https://doi.org/10.3390/robotics3020120CrossRefGoogle Scholar
  21. 21.
    Herr, H.: Exoskeletons and orthoses: classification, design challenges and future directions. J. Neuro Eng. Rehabil. 6, 21 (2009).  https://doi.org/10.1186/1743-0003-6-21CrossRefGoogle Scholar
  22. 22.
    Yue, Z., Zhang, X., Wang, J.: Hand rehabilitation robotics on poststroke motor recovery. Behav. Neurol. (2017).  https://doi.org/10.1155/2017/3908135
  23. 23.
    Ghosh, P., Mazumder, A., Banerjee, A., Tibarewala, D.N.: Electromyography-based functional electrical stimulation (FES) in rehabilitation. Biomed. Image Anal. Min. Tech. Improv. Health Outcomes 337–355 (2016).  https://doi.org/10.4018/978-1-4666-8811-7.ch016
  24. 24.
    Soekadar, S.R., Birbaumer, N., Slutzky, M.W., Cohen, L.G.: Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015).  https://doi.org/10.1016/j.nbd.2014.11.025CrossRefGoogle Scholar
  25. 25.
    Martin, R., Sadowsky, C., Obst, K., Meyer, B., McDonald, J.: Functional electrical stimulation in spinal cord injury: from theory to practice. Top. Spinal Cord Inj. Rehabil. 18, 28–33 (2012).  https://doi.org/10.1310/sci1801-28CrossRefGoogle Scholar
  26. 26.
    Takeda, K., Tanino, G., Miyasaka, H.: Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation. Med. Devices Auckl. NZ. 10, 207–213 (2017).  https://doi.org/10.2147/MDER.S123464CrossRefGoogle Scholar
  27. 27.
    Atzori, M., Cognolato, M., Müller, H.: Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front. Neurorobotics 10 (2016).  https://doi.org/10.3389/fnbot.2016.00009
  28. 28.
    Zhang, Y., Wang, Y., Zhou, G., Jin, J., Wang, B., Wang, X., Cichocki, A.: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst. Appl. 96, 302–310 (2018).  https://doi.org/10.1016/j.eswa.2017.12.015CrossRefGoogle Scholar
  29. 29.
    Latif, M.Y., Naeem, L., Hafeez, T., Raheel, A., Saeed, S.M.U., Awais, M., Alnowami, M., Anwar, S.M.: Brain computer interface based robotic arm control. In: 2017 International Smart Cities Conference ISC2, pp. 1–5 (2017).  https://doi.org/10.1109/isc2.2017.8090870
  30. 30.
    Hsu, W.-C., Lin, L.-F., Chou, C.-W., Hsiao, Y.-T., Liu, Y.-H.: EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. Int. J. Fuzzy Syst. 19, 566–579 (2017).  https://doi.org/10.1007/s40815-016-0259-9MathSciNetCrossRefGoogle Scholar
  31. 31.
    Jung, J.-Y., Heo, W., Yang, H., Park, H.: A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots. Sensors 15, 27738–27759 (2015).  https://doi.org/10.3390/s151127738CrossRefGoogle Scholar
  32. 32.
    Ahangi, A., Karamnejad, M., Mohammadi, N., Ebrahimpour, R., Bagheri, N.: Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput. Appl. 23, 1319–1327 (2013).  https://doi.org/10.1007/s00521-012-1074-3CrossRefGoogle Scholar
  33. 33.
    Wolpaw, J., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice, 1st edn. Oxford University Press, Oxford, New York (2012)Google Scholar
  34. 34.
    Kapadia, N., Masani, K., Catharine Craven, B., Giangregorio, L.M., Hitzig, S.L., Richards, K., Popovic, M.R.: A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking competency. J. Spinal Cord Med. 37, 511–524 (2014).  https://doi.org/10.1179/2045772314y.0000000263
  35. 35.
    Davies, L., Chappell, P., Melvin, T.: Modelling the effect of hydration on skin conductivity. Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin ISBS Int. Soc. Digit. Imaging Skin ISDIS Int. Soc. Skin Imaging ISSI 23, 363–368 (2017).  https://doi.org/10.1111/srt.12344
  36. 36.
    Lynch, C.L., Graham, G.M., Popovic, M.R.: A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool. J. Neural Eng. 8, 046034 (2011).  https://doi.org/10.1088/1741-2560/8/4/046034CrossRefGoogle Scholar
  37. 37.
    Muro-de-la-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems. Highlighting Clin. Appl. Sens. 14, 3362–3394 (2014).  https://doi.org/10.3390/s140203362CrossRefGoogle Scholar
  38. 38.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007).  https://doi.org/10.1109/TBME.2007.901024CrossRefGoogle Scholar
  39. 39.
    Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) Computational Intelligence and Bioinspired Systems, pp. 758–770. Springer, Berlin Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40, 16–28 (2014).  https://doi.org/10.1016/j.compeleceng.2013.11.024CrossRefGoogle Scholar
  41. 41.
    Dimitrakopoulos, G.N., Kakkos, I., Thakor, N.V., Bezerianos, A., Sun, Y.: A mental fatigue index based on regression using multiband EEG features with application in simulated driving. In: Conference Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3220–3223 (2017).  https://doi.org/10.1109/embc.2017.8037542
  42. 42.
    Dimitrakopoulos, G.N., Kakkos, I., Dai, Z., Lim, J., deSouza, J.J., Bezerianos, A., Sun, Y.: Task-independent mental workload classification based upon common multiband EEG cortical connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1940–1949 (2017).  https://doi.org/10.1109/tnsre.2017.2701002
  43. 43.
    Dotov, D.G., Bardy, B.G., Dalla Bella, S.: The role of environmental constraints in walking: effects of steering and sharp turns on gait dynamics. Sci. Rep. 6 (2016).  https://doi.org/10.1038/srep28374
  44. 44.
    Klein, J., Spencer, S.J., Reinkensmeyer, D.J.: Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 268–275 (2012).  https://doi.org/10.1109/TNSRE.2012.2195202CrossRefGoogle Scholar
  45. 45.
    Carbonaro, N., Mura, G.D., Lorussi, F., Paradiso, R., Rossi, D.D., Tognetti, A.: Exploiting wearable goniometer technology for motion sensing gloves. IEEE J. Biomed. Health Inform. 18, 1788–1795 (2014).  https://doi.org/10.1109/JBHI.2014.2324293CrossRefGoogle Scholar
  46. 46.
    Vito, L.D., Postolache, O., Rapuano, S.: Measurements and sensors for motion tracking in motor rehabilitation. IEEE Instrum. Meas. Mag. 17, 30–38 (2014).  https://doi.org/10.1109/MIM.2014.6825386CrossRefGoogle Scholar
  47. 47.
    Fleury, A., Sugar, M., Chau, T.: E-textiles in clinical rehabilitation: a scoping review. Electronics 4, 173–203 (2015).  https://doi.org/10.3390/electronics4010173CrossRefGoogle Scholar
  48. 48.
    Lee, B.W., Lee, C., Kim, J., Lee, M.: Optimum conductive fabric sensor sites for evaluating the status of knee joint movements using bio-impedance. Biomed. Eng. Online 10, 48 (2011).  https://doi.org/10.1186/1475-925X-10-48CrossRefGoogle Scholar
  49. 49.
    Postolache, O.: Physical rehabilitation assessment based on smart training equipment and mobile APPs. In: 2015 E-Health Bioengineering Conference (EHB), pp. 1–6 (2015).  https://doi.org/10.1109/ehb.2015.7391530
  50. 50.
    Song, Z., Guo, S.: Design process of exoskeleton rehabilitation device and implementation of bilateral upper limb motor movement. J. Med. Biol. Eng. 32, 323–330 (2011).  https://doi.org/10.5405/jmbe.987CrossRefGoogle Scholar
  51. 51.
    Zhang, X., Xiang, Z., Lin, Q., Zhou, Q.: The design and development of a lower limbs rehabilitation exoskeleton suit. In: 2013 ICME International Conference on Complex Medical Engineering, pp. 307–312 (2013).  https://doi.org/10.1109/iccme.2013.6548260
  52. 52.
    Rajanna, V., Vo, P., Barth, J., Mjelde, M., Grey, T., Oduola, C., Hammond, T.: KinoHaptics: an automated, wearable, haptic assisted, physiotherapeutic system for post-surgery rehabilitation and self-care. J. Med. Syst. 40, 60 (2015).  https://doi.org/10.1007/s10916-015-0391-3CrossRefGoogle Scholar
  53. 53.
    Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015).  https://doi.org/10.1016/j.robot.2014.08.014CrossRefGoogle Scholar
  54. 54.
    Song, Z., Guo, S., Pang, M., Zhang, S., Xiao, N., Gao, B., Shi, L.: Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. J. Med. Biol. Eng. 34, 188–196 (2014).  https://doi.org/10.5405/jmbe.1337CrossRefGoogle Scholar
  55. 55.
    Miura, N., Watanabe, T., Sugimoto, S., Seki, K., Kanai, H.: Fuzzy FES controller using cycle-to-cycle control for repetitive movement training in motor rehabilitation. Experimental tests with wireless system. J. Med. Eng. Technol. 35, 314–321 (2011).  https://doi.org/10.3109/03091902.2011.591480
  56. 56.
    Kim, B., Kim, L., Kim, Y.-H., Yoo, S.K.: Cross-association analysis of EEG and EMG signals according to movement intention state. Cogn. Syst. Res. 44, 1–9 (2017).  https://doi.org/10.1016/j.cogsys.2017.02.001CrossRefGoogle Scholar
  57. 57.
    Enders, H., Nigg, B.M.: Measuring human locomotor control using EMG and EEG: current knowledge, limitations and future considerations. Eur. J. Sport Sci. 16, 416–426 (2016).  https://doi.org/10.1080/17461391.2015.1068869CrossRefGoogle Scholar
  58. 58.
    Chai, J., Chen, G., Thangavel, P., Dimitrakopoulos, G.N., Kakkos, I., Sun, Y., Dai, Z., Yu, H., Thakor, N., Bezerianos, A., Li, J.: Identification of gait-related brain activity using electroencephalographic signals. In: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 548–551 (2017).  https://doi.org/10.1109/ner.2017.8008410
  59. 59.
    Shakeel, A., Navid, M.S., Anwar, M.N., Mazhar, S., Jochumsen, M., Niazi, I.K.: A review of techniques for detection of movement intention using movement-related cortical potentials. Comput. Math. Methods Med. (2015).  https://doi.org/10.1155/2015/346217CrossRefGoogle Scholar
  60. 60.
    Ahmadian, P., Cagnoni, S., Ascari, L.: How capable is non-invasive EEG data of predicting the next movement? A mini review. Front. Hum. Neurosci. 7, 124 (2013).  https://doi.org/10.3389/fnhum.2013.00124CrossRefGoogle Scholar
  61. 61.
    Schultze-Kraft, M., Birman, D., Rusconi, M., Allefeld, C., Görgen, K., Dähne, S., Blankertz, B., Haynes, J.-D.: The point of no return in vetoing self-initiated movements. Proc. Natl. Acad. Sci. U. S. A. 113, 1080–1085 (2016).  https://doi.org/10.1073/pnas.1513569112CrossRefGoogle Scholar
  62. 62.
    Kato, Y.X., Yonemura, T., Samejima, K., Maeda, T., Ando, H.: Development of a BCI master switch based on single-trial detection of contingent negative variation related potentials. In: Conference Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4629–4632 (2011).  https://doi.org/10.1109/iembs.2011.6091146
  63. 63.
    Remsik, A., Young, B., Vermilyea, R., Kiekhoefer, L., Abrams, J., Evander Elmore, S., Schultz, P., Nair, V., Edwards, D., Williams, J., Prabhakaran, V.: A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke. Expert Rev. Med. Devices. 13, 445–454 (2016).  https://doi.org/10.1080/17434440.2016.1174572
  64. 64.
    Ang, K.K., Chua, K.S.G., Phua, K.S., Wang, C., Chin, Z.Y., Kuah, C.W.K., Low, W., Guan, C.: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46, 310–320 (2015).  https://doi.org/10.1177/1550059414522229CrossRefGoogle Scholar
  65. 65.
    López-Larraz, E., Trincado-Alonso, F., Rajasekaran, V., Pérez-Nombela, S., Del-Ama, A.J., Aranda, J., Minguez, J., Gil-Agudo, A., Montesano, L.: Control of an ambulatory exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation. Front. Neurosci. 10, 359 (2016).  https://doi.org/10.3389/fnins.2016.00359CrossRefGoogle Scholar
  66. 66.
    Bhagat, N.A., Venkatakrishnan, A., Abibullaev, B., Artz, E.J., Yozbatiran, N., Blank, A.A., French, J., Karmonik, C., Grossman, R.G., O’Malley, M.K., Francisco, G.E., Contreras-Vidal, J.L.: Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci. 10, 122 (2016).  https://doi.org/10.3389/fnins.2016.00122CrossRefGoogle Scholar
  67. 67.
    Jure, F.A., Carrere, L.C., Gentiletti, G.G., Tabernig, C.B.: BCI-FES system for neuro-rehabilitation of stroke patients. J. Phys: Conf. Ser. 705, 012058 (2016).  https://doi.org/10.1088/1742-6596/705/1/012058CrossRefGoogle Scholar
  68. 68.
    Do, A.H., Wang, P.T., King, C.E., Abiri, A., Nenadic, Z.: Brain-computer interface controlled functional electrical stimulation system for ankle movement. J. Neuro. Eng. Rehabil. 8, 49 (2011).  https://doi.org/10.1186/1743-0003-8-49CrossRefGoogle Scholar
  69. 69.
    Kim, T.-W., Lee, B.-H.: Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial. J. Phys. Ther. Sci. 28, 2491–2494 (2016).  https://doi.org/10.1589/jpts.28.2491CrossRefGoogle Scholar
  70. 70.
    Chung, E., Kim, J.-H., Park, D.-S., Lee, B.-H.: Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial. J. Phys. Ther. Sci. 27, 559–562 (2015).  https://doi.org/10.1589/jpts.27.559CrossRefGoogle Scholar
  71. 71.
    Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T., Schnider, A., Schmidlin, T., Zhang, H., Bassolino, M., Viceic, D., Vuadens, P., Guggisberg, A.G., Millán, J.R.: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9, 2421 (2018).  https://doi.org/10.1038/s41467-018-04673-z
  72. 72.
    Aach, M., Cruciger, O., Sczesny-Kaiser, M., Höffken, O., Meindl, R.C., Tegenthoff, M., Schwenkreis, P., Sankai, Y., Schildhauer, T.A.: Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study, Spine. J. Off. J. North Am. Spine Soc. 14, 2847–2853 (2014).  https://doi.org/10.1016/j.spinee.2014.03.042CrossRefGoogle Scholar
  73. 73.
    Ockenfeld, C., Tong, R.K.Y., Susanto, E.A., Ho, S.-K., Hu, X.: Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation. IEEE Int. Conf. Rehabil. Robot. Proc. 2013, 6650392 (2013).  https://doi.org/10.1109/ICORR.2013.6650392CrossRefGoogle Scholar
  74. 74.
    Chen, M., Wu, B., Lou, X., Zhao, T., Li, J., Xu, Z., Hu, X., Zheng, X.: A self-adaptive foot-drop corrector using functional electrical stimulation (FES) modulated by tibialis anterior electromyography (EMG) dataset. Med. Eng. Phys. 35, 195–204 (2013).  https://doi.org/10.1016/j.medengphy.2012.04.016CrossRefGoogle Scholar
  75. 75.
    Shindo, K., Fujiwara, T., Hara, J., Oba, H., Hotta, F., Tsuji, T., Hase, K., Liu, M.: Effectiveness of hybrid assistive neuromuscular dynamic stimulation therapy in patients with subacute stroke: a randomized controlled pilot trial. Neurorehabil. Neural Repair 25, 830–837 (2011).  https://doi.org/10.1177/1545968311408917CrossRefGoogle Scholar
  76. 76.
    Knutson, J.S., Harley, M.Y., Hisel, T.Z., Hogan, S.D., Maloney, M.M., Chae, J.: Contralaterally controlled functional electrical stimulation for upper extremity hemiplegia: an early-phase randomized clinical trial in subacute stroke patients. Neurorehabil. Neural Repair 26, 239–246 (2012).  https://doi.org/10.1177/1545968311419301CrossRefGoogle Scholar
  77. 77.
    Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., Troncossi, M., Foumashi, M.M., Mazzotti, C., Castelli, V.P.: An emg-based robotic hand exoskeleton for bilateral training of grasp. In: 2013 World Haptics Conference (WHC), pp. 537–542 (2013).  https://doi.org/10.1109/whc.2013.6548465
  78. 78.
    Popović Maneski, L., Topalović, I., Jovičić, N., Dedijer, S., Konstantinović, L., Popović, D.B.: Stimulation map for control of functional grasp based on multi-channel EMG recordings. Med. Eng. Phys. 38, 1251–1259 (2016).  https://doi.org/10.1016/j.medengphy.2016.06.004
  79. 79.
    Liu, L., Chen, X., Lu, Z., Cao, S., Wu, D., Zhang, X.: Development of an EMG-ACC-based upper limb rehabilitation training system. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 244–253 (2017).  https://doi.org/10.1109/TNSRE.2016.2560906CrossRefGoogle Scholar
  80. 80.
    Rincon, A.L., Yamasaki, H., Shimoda, S.: Design of a video game for rehabilitation using motion capture, EMG analysis and virtual reality. In: 2016 International Conference on Electronics, Communications and Computers CONIELECOMP, pp. 198–204 (2016).  https://doi.org/10.1109/conielecomp.2016.7438575
  81. 81.
    Sarasola-Sanz, A., Irastorza-Landa, N., Lopez-Larraz, E., Bibian, C., Helmhold, F., Broetz, D., Birbaumer, N., Ramos-Murguialday, A.: A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. IEEE Int. Conf. Rehabil. Robot. Proc. 2017, 895–900 (2017).  https://doi.org/10.1109/ICORR.2017.8009362CrossRefGoogle Scholar
  82. 82.
    Rayegani, S.M., Raeissadat, S.A., Sedighipour, L., Rezazadeh, I.M., Bahrami, M.H., Eliaspour, D., Khosrawi, S.: Effect of neurofeedback and Electromyographic-biofeedback therapy on improving hand function in stroke patients. Top. Stroke Rehabil. 21, 137–151 (2014).  https://doi.org/10.1310/tsr2102-137CrossRefGoogle Scholar
  83. 83.
    Grimaldi, G., Manto, M., Jdaoudi, Y.: Quality parameters for a multimodal EEG/EMG/kinematic brain-computer interface (BCI) aiming to suppress neurological tremor in upper limbs. F1000Research 2, 282 (2013).  https://doi.org/10.12688/f1000research.2-282.v2
  84. 84.
    Khushaba, R.N., Takruri, M., Miro, J.V., Kodagoda, S.: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw. 55, 42–58 (2014).  https://doi.org/10.1016/j.neunet.2014.03.010CrossRefGoogle Scholar
  85. 85.
    Kyranou, I., Vijayakumar, S., Erden, M.S.: Causes of performance degradation in non-invasive electromyographic pattern recognition in upper limb prostheses. Front. Neurorobotics. 12 (2018).  https://doi.org/10.3389/fnbot.2018.00058
  86. 86.
    Dimyan, M.A., Cohen, L.G.: Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85 (2011).  https://doi.org/10.1038/nrneurol.2010.200CrossRefGoogle Scholar
  87. 87.
    Levin, M.F., Kleim, J.A., Wolf, S.L.: What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319 (2009).  https://doi.org/10.1177/1545968308328727CrossRefGoogle Scholar
  88. 88.
    Kakkos, I., Dimitrakopoulos, G.N., Gao, L., Zhang, Y., Qi, P., Matsopoulos, G.K., Thakor, N., Bezerianos, A., Sun, Y.: Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 27, 1704–1713 (2019).  https://doi.org/10.1109/tnsre.2019.2930082
  89. 89.
    Dimitrakopoulos, G.N., Kakkos, I., Dai, Z., Wang, H., Sgarbas, K., Thakor, N., Bezerianos, A., Sun, Y.: Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 740–749 (2018).  https://doi.org/10.1109/tnsre.2018.2791936
  90. 90.
    EEG motor movement/imagery dataset, (n.d.). https://www.physionet.org/pn4/eegmmidb/

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Ioannis Kakkos
    • 1
    Email author
  • Stavros-Theofanis Miloulis
    • 1
  • Kostakis Gkiatis
    • 1
  • Georgios N. Dimitrakopoulos
    • 1
    • 2
  • George K. Matsopoulos
    • 1
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of MedicineUniversity of PatrasPatrasGreece

Personalised recommendations