Skip to main content

Viscoelastic Modelling of Polymer Melts and Rubber Compounds

  • Conference paper
  • First Online:
Advances in Polymer Processing 2020

Abstract

Thermoplastic melts and rubber compounds are viscoelastic fluids. They show a complex flow behavior, which is influenced by various factors such as polymer type, molar mass distribution, recipe, filler-filler network and in some cases wall slippage. Most of the state-of-the-art simulation software packages use viscous material models for the calculation of the flow field as well as pressure and temperature distribution, neglecting the viscoelastic nature of polymers. This simplification may lead to an underestimated pressure demand in injection molding simulation.

This contribution presents how to correctly measure viscosity data (shear and extensional viscosity) for thermoplastics and rubber compounds taking into account the pressure dependency of the viscosity and the influence of viscous dissipation in capillary rheometry at higher shear rates. Moreover, a guideline on how to best fit rheological data with the viscoelastic K-BKZ/Wagner model is outlined. Comparing CFD simulation results to experimental data, only the K-BKZ/Wagner model is able to correctly predict pressure losses of contraction flow dominated geometries. Examples will be given for NBR and PP-PNC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Fasching, M.: Robust processing in rubber injection molding using advanced simulation methods and material data. Dissertation, Montanuniversitaet Leoben (2015)

    Google Scholar 

  2. Mitsoulis, E.: 50 Years of the K-BKZ Constitutive Relation for Polymers. ISRN Polym. Sci. 1–22 (2013)

    Article  Google Scholar 

  3. Ansari, M., Hatzikiriakos, S.G., Mitsoulis, E.: Slip effects in HDPE flows. J. Non-Newtonian Fluid Mech. (2011)

    Google Scholar 

  4. Ansari, M., Zisis, T., Hatzikiriakos, S.G., Mitsoulis, E.: Capillary flow of low-density polyethylene. Polym. Eng. Sci. 52, 649–662 (2012)

    Article  Google Scholar 

  5. Konaganti, V.K., Derakhshandeh, M., Ebrahimi, M., Mitsoulis, E., Hatzikiriakos, S.G.: Non-isothermal extrudate swell. Phys. Fluids 28, 123101 (2016)

    Article  Google Scholar 

  6. Mitsoulis, E.: Effect of Viscoelasticity in Fountain Flow of Polyethylene Melts. Int. Polym. Proc. 24, 439–451 (2009)

    Article  Google Scholar 

  7. Mitsoulis, E., Battisti, M., Neunhäuserer, A., Perko, L., Friesenbichler, W., Ansari, M., Hatzikiriakos, S.G.: Flow behaviour of rubber in capillary and injection moulding dies. Rubber Compos. 46, 110–118 (2017)

    Article  Google Scholar 

  8. Mitsoulis, E., Battisti, M., Neunhäuserer, A., Perko, L., Friesenbichler, W.: Flow behavior of PP-polymer nanocomposites in injection molding hyperbolical dies. Adv. Polym. Technol. 1–11 (2018)

    Google Scholar 

  9. Lucyshyn, T.: Simulation report for a thin-walled bushing for company PKT Praezisionskunststofftechnik Buertlmair Gesellschaft m.b.H. Institute of Polymer Processing, Montanuniversitaet Leoben (2016)

    Google Scholar 

  10. Perko, L., Fasching, M., Friesenbichler, W.: Model for the prediction of bulk temperature changes and pressure losses in rubber compounds flowing through conical dies: An engineering approach. Polym. Eng. Sci. 55, 701–709 (2014)

    Article  Google Scholar 

  11. Cogswell, F.N.: Converging flow of polymer melts in extrusion dies. Polym. Eng. Sci. 12, 64–73 (1972)

    Article  Google Scholar 

  12. Perko, L., Friesenbichler, W., Obendrauf, W., Buchebner, V., Chaloupka, G.: Elongational viscosity of rubber compounds and improving corresponding models. Adv. Prod. Eng. Manag. 8, 126–133 (2013)

    Article  Google Scholar 

  13. Binding, D.: An approximate analysis for contraction and converging flows. J. Non-Newtonian Fluid Mech. 27, 173–189 (1988)

    Article  Google Scholar 

  14. Sentmanat, M.L., Rheol, M.L.: Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Acta 43, 657 (2004)

    Article  Google Scholar 

  15. ANSYS Inc.: ANSYS Polyflow User’s Guide: Release 18.2: Canonsburg, PA, USA (2017)

    Google Scholar 

  16. Wagner, M.H.: A constitutive analysis of uniaxial elongational flow data of low-density polyethylene melt. J. Non-Newtonian Fluid Mech. 4, 39–55 (1978)

    Article  Google Scholar 

  17. Leblanc, J.: Rubber–filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 27, 627–687 (2002)

    Article  Google Scholar 

  18. Payne, A.R.: The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 6, 57–63 (1962)

    Article  Google Scholar 

  19. Friesenbichler, W., Berger, G., Fasching, M.: Simulation of Rubber Injection Molding – Challenges and Limitations. Conference Proceedings of the 7th bi-annual International Conference of Polymer & Molds Innovations (PMI). Gent 2016. pp. 179–183

    Google Scholar 

Download references

Acknowledgements

This research work was supported by the Austrian Research Promotion Agency (FFG) as part of the “RubExject II” project (corresponding project number 855873) and the company partners SKF Sealing Solutions Austria GmbH, Judenburg, Austria, IB Steiner, Spielberg, Austria and ELMET Elastomere Produktions- und Dienstleistungs-GmbH, Oftering, Austria. The authors further thank company PKT Praezisions-kunststofftechnik Buertlmair Gesellschaft m.b.H. and Prof. T. Lucyshyn, Dr. Ivica Duretek, MSc Stephan Schuschnigg and Dr. Matthias Haselmann for their respective contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Friesenbichler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friesenbichler, W., Stieger, S., Kerschbaumer, R., Berger-Weber, G., Neunhaeuserer, A., Mitsoulis, E. (2020). Viscoelastic Modelling of Polymer Melts and Rubber Compounds. In: Hopmann, C., Dahlmann, R. (eds) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60809-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60809-8_22

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60808-1

  • Online ISBN: 978-3-662-60809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics