Advertisement

Permeation Properties of Laser-Sintered Polyamide 12 Sheets in Comparison to an Extruded Polyamide 12 Film

  • Anna LiebrichEmail author
  • Horst-Christian Langowski
  • Regina Schreiber
  • Bernd R. Pinzer
Conference paper
  • 35 Downloads

Abstract

Laser sintering of polymers is widely used for the production of individual products and small-batch series. However, the qualification of laser-sintered polymeric components for new application fields, e.g. in the food and packaging industry, is still limited due to missing knowledge on physicochemical material properties. This work investigates the mass transfer of low molecular weight substances through laser-sintered polyamide 12 sheets in comparison to an extruded polyamide 12 film. Analysis of structural material properties reveals significant differences between both materials depending on the production processes. Despite their apparent porosity, laser-sintered sheets show lower permeation coefficients for water vapor and oxygen compared to extruded films. This might be related to the higher crystallinity of the laser-sintered vs. the extruded material, arising from the slow cooling rate of the polymer in the laser sintering process.

This research brings knowledge of the different permeation behavior of laser-sintered and extruded polyamide 12 in relation to the structural properties.

Keywords

Laser sintering Permeation properties Porosity Crystallinity Crystal structure Polyamide 12 

Notes

Acknowledgments

The authors would like to thank Monika Gessler from EOS Electro Optical Systems GmbH (Krailling, Germany) for her helpful advice and for providing the LS samples for this research.

References

  1. 1.
    Gebhardt, A., Hötter, J.-S.: Additive Manufacturing: 3D Printing for Prototyping and Manufacturing. Hanser, Munich (2016)CrossRefGoogle Scholar
  2. 2.
    Goodridge, R., Tuck, C., Hague, R.: Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 57, 229–267 (2012)CrossRefGoogle Scholar
  3. 3.
    Schmid, M.: Laser Sintering with Plastics: Technology, Processes, and Materials. Hanser, Munich (2018)CrossRefGoogle Scholar
  4. 4.
    Wörz, A., Wudy, K., Drummer, D., Wegner, A., Witt, G.: Comparison of long-term properties of laser sintered and injection molded polyamide 12 parts. J. Polym. Eng. 38, 573–582 (2018)CrossRefGoogle Scholar
  5. 5.
    Van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., Sas, P.: On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering. Polym. Test. 32, 972–981 (2013)CrossRefGoogle Scholar
  6. 6.
    Brandrup, J., Immergut, E.H., Grulke, E.A., Abe, A., Bloch, D.R.: Polymer Handbook, 4th edn. Wiley, New York (1999)Google Scholar
  7. 7.
    Bourell, D.L., Watt, T.J., Leigh, D.K., Fulcher, B.: Performance limitations in polymer laser sintering. Phys. Procedia 56, 147–156 (2014)CrossRefGoogle Scholar
  8. 8.
    Langowski, H.C.: Permeation of Gases and Condensable Substances through Monolayer and Multilayer Structures. In: Piringer, O.G., Baner, A.L. (eds.) Plastic Packaging. Interactions with Food and Pharmaceuticals, pp. 297–347. Wiley-VCH, Weinheim (2008)CrossRefGoogle Scholar
  9. 9.
    Barrer, R.M.: Diffusion in and Through Solids. University Press, Cambridge (1941)Google Scholar
  10. 10.
    Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)zbMATHGoogle Scholar
  11. 11.
    Wegner, A.: Theory on the continuation of melting processes as basic requirement for a robust processing in laser sintering of thermoplastics (Diss.), Universitätsbibliothek Duisburg-Essen (2015)Google Scholar
  12. 12.
    Liebrich, A., Langowski, H.C., Schreiber, R., Pinzer, B.R.: Porosity distribution in laser-sintered polymeric thin sheets as revealed by X-ray micro tomography. Polym. Test. 76, 286–297 (2019)CrossRefGoogle Scholar
  13. 13.
    Gogolewski, S., Czerntawska, K., Gastorek, M.: Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam). Colloid Polym. Sci. 258, 1130–1136 (1980)CrossRefGoogle Scholar
  14. 14.
    Launhardt, M., Wörz, A., Loderer, A., Laumer, T., Drummer, D., Hausotte, T., Schmidt, M.: Detecting surface roughness on SLS parts with various measuring techniques. Polym. Test. 53, 217–226 (2016)CrossRefGoogle Scholar
  15. 15.
    Liebrich, A., Langowski, H.C., Schreiber, R., Pinzer, B.R.: Permeation properties of laser-sintered polyamide 12 sheets in relation to their material structure, to be published in Additive ManufacturingGoogle Scholar
  16. 16.
    Müller, K., Scheuerer, Z., Florian, V., Skutschik, T., Sängerlaub, S.: Comparison of test methods for oxygen permeability: optical method versus carrier gas method. Polym. Test. 63, 126–132 (2017)CrossRefGoogle Scholar
  17. 17.
    Rüsenberg, S., Schmidt, L., Schmid, H.: Mechanical and physical properties—A way to assess quality of laser sintered parts. In: Proceedings of the 22nd International Solid Freeform Fabrication Symposium, pp. 239–251 (2011)Google Scholar
  18. 18.
    Verbelen, L., Dadbakhsh, S., Van den Eynde, M., Kruth, J.-P., Goderis, B., Van Puyvelde, P.: Characterization of polyamide powders for determination of laser sintering processability. Eur. Polym. J. 75, 163–174 (2016)CrossRefGoogle Scholar
  19. 19.
    Meyer, K.R., Hornung, K.H., Feldmann, R., Smigerski, H.J.: Method for polytropically precipitating polyamide powder coating compositions where the polyamides have at least 10 aliphatically bound carbon atoms per carbonamide group. US Patent 4,334,056, 1982Google Scholar
  20. 20.
    Scholten, H., Christoph, W.: Use of a nylon-12 for selective laser sintering. US Patent 6,245,281, 2001Google Scholar
  21. 21.
    Schmid, M., Amado, A., Wegener, K.: Materials perspective of polymers for additive manufacturing with selective laser sintering. J. Mater. Res. 29, 1824–1832 (2014)CrossRefGoogle Scholar
  22. 22.
    Zarringhalam, H., Majewski, C., Hopkinson, N.: Degree of particle melt in Nylon-12 selective laser-sintered parts. Rapid Prototyp. J. 15, 126–132 (2009)CrossRefGoogle Scholar
  23. 23.
    Domininghaus, H.: Kunststoffe: Eigenschaften und Anwendungen (Plastics: Properties and Applications), 7th edn. Springer, Berlin (2008)CrossRefGoogle Scholar
  24. 24.
    McKeen, L.W.: Permeability Properties of Plastics and Elastomers. William Andrew Publishing, Oxford (2012)Google Scholar
  25. 25.
    Tasch, D., Mad, A., Stadlbauer, R., Schagerl, M.: Thickness dependency of mechanical properties of laser-sintered polyamide lightweight structures. Addit. Manuf. 23, 25–33 (2018)CrossRefGoogle Scholar
  26. 26.
    Michaels, A., Parker Jr., R.: Sorption and flow of gases in polyethylene. J. Polym. Sci. 41, 53–71 (1959)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Anna Liebrich
    • 1
    • 3
    • 4
    Email author
  • Horst-Christian Langowski
    • 1
    • 3
    • 4
  • Regina Schreiber
    • 2
    • 4
  • Bernd R. Pinzer
    • 2
    • 5
  1. 1.Chair of Food Packaging Technology, Technical University of MunichFreisingGermany
  2. 2.University of Applied Sciences KemptenKemptenGermany
  3. 3.Fraunhofer Institute of Process Engineering and Packaging IVVFreisingGermany
  4. 4.Kompetenzzentrum für angewandte Forschung in der Lebensmittel- und Verpackungstechnologie (KLEVERTEC)KemptenGermany
  5. 5.Laboratory for Optical 3D Metrology and Computer VisionUniversity of Applied Sciences KemptenKemptenGermany

Personalised recommendations