Towards Process Optimisation of Polyurethane Pultrusion Using 3D Simulation

  • Benedikt KilianEmail author
  • Sascha Fröbel
  • Dirk Brüning
Conference paper


To boost high productivity when manufacturing composite profiles with consistent quality in pultrusion, simulation methods are widely used to identify optimum process parameters. Although polyurethane resins are of interest for high speed production due to their low viscosity and high reactivity, no in-depth process simulation of the polyurethane pultrusion process has been published yet. In this paper, a new kinetic model for a polyurethane pultrusion system is presented and applied in a process simulation routine. After comparing simulation results with on-line measurements, the effect of varying process and profile parameters on the resulting degree of cure and temperature distribution is evaluated. It can be confirmed that increasing line speed or profile thickness significantly decreases the average degree of cure at the die exit. This effect can at least partly be compensated by major die temperature adjustments which in turn lead to an overall higher profile temperature. Line speed and die temperatures also determine length and position of the gel zone. The initial material temperature has no significant impact on the resulting degree of cure and temperature distribution.


Pultrusion Polyurethane Simulation Kinetic model Curing Temperature Die 


  1. 1.
    Starr, T.: Pultrusion for Engineers. Woodhead Publishing Limited, Abington (2000)CrossRefGoogle Scholar
  2. 2.
    Patrawala, T.B.: Decision support tool for costing of the pultrusion process, M.Sc. thesis, College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA (1999)Google Scholar
  3. 3.
    Hopmann, C., Manderscheid, A., Kilian, B., Schneider, D., Fischer, K.: Effiziente Verarbeitungstechnologien für Polyurethan-Leichtbau – Ansätze zur kosteneffizienten Herstellung endlosfaserverstärkter PUR-Profile. In: Umdruck zum 29. Internationalen Kolloquium Kunststofftechnik, ed. Aachen: Institut für Kunststoffverarbeitung (2018)Google Scholar
  4. 4.
    Michaeli, W.: Pultrusion of Composite Profiles – Polyurethane (PU) as Alternative Matrix System. Polym. Polym. Compos. 18, 537–542 (2010)Google Scholar
  5. 5.
    Connolly, M., Heberer, D.: Advances in polyurethane pultrusion: cure modeling and ‘Second Generation’ resin systems, presented at the ACMA Composites, Las Vegas, Nevada, USA (2012)Google Scholar
  6. 6.
    Hopmann, C., Schneider, P., Böttcher, A.: Von der Injektionsbox zum komplexen Werkzeug zur Fertigung von Hybridprofilen. VDI Konstruktion 7-8:IW6–IW9 (2014)Google Scholar
  7. 7.
    Bramante, G., Bertucelli, L., Benvenuti, A., Meyer, K.J.: Polyurethan-Verbundstoffe – Mechanische Analyse von pultrudierten Laminaten. PU Mag. 15, 136–145 (2015)Google Scholar
  8. 8.
    Hopmann, C., Schneider, P., Neuhaus, B., Goeschel, J., Böttcher, A.: Neue Polyurethansysteme für die Produktion von Composite-Profilen. Lightweight Design 9, 52–57 (2016)CrossRefGoogle Scholar
  9. 9.
    Hinz, W., Kilian, B.: New markets for PU pultrusion. FAPU Eur. Polyure. J. 100, 32–35 (2017)Google Scholar
  10. 10.
    Heinz, P., Kilian, B., Meisenheimer, R., Mentizi, S.: Performance leap in pultrusion with polyurethane. PU Mag. 15, 476–479 (2018)Google Scholar
  11. 11.
    Neuhaus, B., Liese, J.: New lightness with PU Pultruded Parts. Presented at the 14th world pultrusion conference. Vienna, Austria (2018)Google Scholar
  12. 12.
    Sumerak, J.E.: Tough choices for pultruders–polyurethane for high performance pultrusions. Presented at the 7th world pultrusion conference. Schiphol, The Netherlands (2004)Google Scholar
  13. 13.
    Baran, I.: Pultrusion: State-of-the-Art Process Models. Smithers Rapra, Shawbury (2015)Google Scholar
  14. 14.
    Safonov, A.A., Carlone, P., Akhatov, I.: Mathematical simulation of pultrusion processes: a review. Compos. Struct. 184, 153–177 (2018)CrossRefGoogle Scholar
  15. 15.
    Price, H.L.: Curing and flow of thermosetting resins for composite material pultrusion. Ph.D. thesis, Old Dominion University, Norfolk, Virginia, USA (1979)Google Scholar
  16. 16.
    Bezerra, R.M.: Modelling and simulation of the closed injection pultrusion process. Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany (2017)Google Scholar
  17. 17.
    Kamal, M.R., Sourour, S.: Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 13, 59–64 (1973)CrossRefGoogle Scholar
  18. 18.
    Chen, C.-H., Ma, C.-C.M.: Pultruded fibre reinforced polyurethane composites I. process feasibility and morphology. Compos. Sci. Technol. 45, 335–344 (1992)CrossRefGoogle Scholar
  19. 19.
    Chen, C.-H., Ma, C.-C.M.: Pultruded fibre reinforced polyurethane composites II. Effect of processing parameters on mechanical and thermal properties. Compos. Sci. Technol. 45, 345–352 (1992)CrossRefGoogle Scholar
  20. 20.
    Ma, C.C.M., Chen, C.H.: The development of a mathematical model for the pultrusion of blocked polyurethane composites. J. Appl. Polym. Sci. 50, 759–764 (1993)CrossRefGoogle Scholar
  21. 21.
    Chen, C.H., Yen, C.C.: Mathematical model for the pultrusion of blocked PU-UP matrix composites. J. Appl. Polym. Sci. 90, 1996–2002 (2003)CrossRefGoogle Scholar
  22. 22.
    Raffel, B.: Material model for the reaction kinetics of the polyurethane pultrusion system Baydur PUL 20PL07 + desmodur PUL 10PL01 measured in an isolated cup with Adiabatic Temperature Method and ATR-FTIR spectroscopy. Covestro Deutschland AG, Leverkusen, Germany, Internal research report (2010)Google Scholar
  23. 23.
    Raffel, B.: Modeling reaction kinetics of the pultrusion system Baydur PUL 20PL10 as an input for process simulation. Covestro Deutschland AG, Leverkusen, Germany, Internal research report (2017)Google Scholar
  24. 24.
    Batch, G.L., Macosko, C.W.: Heat transfer and cure in pultrusion: model and experimental verification. AIChE J. 39, 1228–1241 (1993)CrossRefGoogle Scholar
  25. 25.
    Baran, I., Tutum, C.C., Hattel, J.H.: The effect of thermal contact resistance on the thermosetting pultrusion process. Compos. Part B Eng. 45, 995–1000 (2013)CrossRefGoogle Scholar
  26. 26.
    Baran, I., Hattel, J.H., Akkerman, R.: Investigation of process induced warpage for pultrusion of a rectangular hollow profile. Compos. Part B Eng. 68, 365–374 (2015)CrossRefGoogle Scholar
  27. 27.
    Macosko, C.W., Miller, D.R.: A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9, 199–206 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Benedikt Kilian
    • 1
    Email author
  • Sascha Fröbel
    • 1
  • Dirk Brüning
    • 1
  1. 1.Covestro Deutschland AGLeverkusenGermany

Personalised recommendations