Advertisement

Kleene Theorems for Free Choice Automata over Distributed Alphabets

  • Ramchandra PhawadeEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11790)

Abstract

We provided (PNSE’2014) expressions for free choice nets having distributed choice property which makes the nets direct product representable. In a recent work (PNSE’2016), we gave equivalent syntax for a larger class of free choice nets obtained by dropping distributed choice property.

In both these works, the classes of free choice nets were restricted by a product condition on the set of final markings. In this paper we do away with this restriction and give expressions for the resultant classes of nets which correspond to free choice synchronous products and Zielonka automata. For free choice nets with distributed choice property, we give an alternative characterization using properties checkable in polynomial time.

Free choice nets we consider are 1-bounded, S-coverable, and are labelled with distributed alphabets, where S-components of the associated S-cover respect the given alphabet distribution.

Keywords

Kleene theorems Petri nets Distributed automata 

Notes

Acknowedgements

We thank anonymous referees of PNSE 2018 workshop and ToPNoC, along with editors Lucio Pomello and Lars Kristensen for their suggestions and patience.

References

  1. 1.
    Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995)CrossRefGoogle Scholar
  4. 4.
    Garg, V.K., Ragunath, M.: Concurrent regular expressions and their relationship to petri nets. Theoret. Comput. Sci. 96(2), 285–304 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427–498 (1981)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hack, M.H.T.: Analysis of production schemata by Petri nets. Project Mac Report TR-94, MIT (1972)Google Scholar
  7. 7.
    Iordache, M.V., Antsaklis, P.J.: The ACTS software and its supervisory control framework. In: Proceedings Conference on Decision and Control, CDC, pp. 7238–7243. IEEE (2012)Google Scholar
  8. 8.
    Jantzen, M.: Language theory of Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 397–412. Springer, Heidelberg (1987).  https://doi.org/10.1007/978-3-540-47919-2_15CrossRefGoogle Scholar
  9. 9.
    Lodaya, K.: Product automata and process algebra. In: SEFM. IEEE (2006)Google Scholar
  10. 10.
    Lodaya, K., Mukund, M., Phawade, R.: Kleene theorems for product systems. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 235–247. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22600-7_19CrossRefzbMATHGoogle Scholar
  11. 11.
    Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions. Eng. Cybern. 5, 110–116 (1966)Google Scholar
  12. 12.
    Mukund, M.: Automata on distributed alphabets. In: D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. World Scientific (2011)Google Scholar
  13. 13.
    Petersen, J.L.: Computation sequence sets. J. Comput. Syst. Sci. 13(1), 1–24 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Phawade, R.: Labelled free choice nets, finite product automata, and expressions. Ph.D. thesis, Homi Bhabha National Institute (2015)Google Scholar
  15. 15.
    Phawade, R.: Kleene theorems for labelled free choice nets without distributed choice. In: Cabac, L., Kristensen, L.M., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 1591, pp. 132–152. CEUR-WS.org (2016)Google Scholar
  16. 16.
    Phawade, R.: Kleene theorems free choice nets labelled with distributed alphabets. In: Daniel Moldt, E.K., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 2138, pp. 77–98. CEUR-WS.org (2018)Google Scholar
  17. 17.
    Phawade, R.: Kleene Theorems for Free Choice Nets Labelled with Distributed Alphabets. arXiv e-prints arXiv:1907.01168, July 2019
  18. 18.
    Phawade, R., Lodaya, K.: Kleene theorems for labelled free choice nets. In: Moldt, D., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 1160, pp. 75–89. CEUR-WS.org (2014)Google Scholar
  19. 19.
    Phawade, R., Lodaya, K.: Kleene theorems for synchronous products with matching. In: Koutny, M., Desel, J., Haddad, S. (eds.) Transactions on Petri Nets and Other Models of Concurrency X. LNCS, vol. 9410, pp. 84–108. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48650-4_5CrossRefGoogle Scholar
  20. 20.
    Zielonka, W.: Notes on finite asynchronous automata. Inform. Theor. Appl. 21(2), 99–135 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology DharwadDharwadIndia

Personalised recommendations