Advertisement

The Use of Group Decision-Making to Improve the Monitoring of Air Quality

  • Cezary OrłowskiEmail author
  • Piotr Cofta
  • Mariusz Wąsik
  • Piotr Welfler
  • Józef Pastuszka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11890)

Abstract

The aim of this paper is to present the use of methods supporting group decision making for the construction of air quality measurement networks. The article presents a a case study of making group decisions related to the construction of a hybrid network for measuring air quality in Gdańsk. Two different methods of data processing were used in the decision making process. The first one is using fuzzy modeling for quantitative data processing to assess the quality of PM10 measurement data. The other is using trust metrics for the IoT nodes of four different measurement networks. The presented example shows the complexity of the decision making process itself as well as the choice of the method. The authors deliberately used both the quantitative and qualitative methods in the decision making process to show the need to search for the right method by decision-makers.

Keywords

Data quality Decision-making Trust management Fuzzy logic 

References

  1. 1.
  2. 2.
    Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley, Hoboken (2001)Google Scholar
  3. 3.
    Aref, A., Tran, T.: A hybrid trust model using reinforcement learning and fuzzy logic. Comput. Intell. 34, 515–541 (2018).  https://doi.org/10.1111/coin.12155(2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
  5. 5.
    Chabik, J., Orłowski, C., Sitek, T.: Intelligent knowledge-based model for IT support organization evolution. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge Management, pp. 177–196. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-04584-4_8CrossRefGoogle Scholar
  6. 6.
    Chang, E., Dillon, T., Hussain, F.: Trust and Reputation for Service-Oriented Environments: Technologies for Building Business Intelligence and Consumer Confidence. Wiley, Hoboken (2006). ISBN: 978-0470015476CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Cofta, P.: Trust, Complexity and Control: Confidence in a Convergent World, Wiley (2007).  https://doi.org/10.1002/9780470517857. ISBN: 9780470061305
  9. 9.
    Dong, Y.C., Xu, Y., Yu, S.: Linguistic multiperson decision making based on the use of multiple preference relations. Fuzzy Sets Syst. 160, 603–623 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fukuyama, F.: Trust: The Social Virtues and the Creation of Prosperity, Touchstone Books (1996). ISBN: 0684825252Google Scholar
  11. 11.
    Golbeck, J.: Computing with Social Trust. Springer, London (2009).  https://doi.org/10.1007/978-1-84800-356-9. ISBN: 978-1-84996-793-8CrossRefGoogle Scholar
  12. 12.
    Górski, J., Cyra, Ł., Jarzębowicz, A., Miler, J.: Representing and appraising Toulmin model arguments in trust cases. In: Grasso, F. (et al.) The 8th International Workshop on Computational Models of Natural Argument (CMNA 8), Patras, Greece, 21 July 2008, 18th European Conference on Artificial Intelligence, 1 1, pp. 26–30 (2008)Google Scholar
  13. 13.
    Griffiths, N.: A fuzzy approach to reasoning with trust, distrust and insufficient trust. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 360–374. Springer, Heidelberg (2006).  https://doi.org/10.1007/11839354_26CrossRefGoogle Scholar
  14. 14.
    Hewitt, E., Carpenter, J.: Cassandra: The Definitive Guide, 2nd edn. O’Reilly Media, Sebastopol (2016)Google Scholar
  15. 15.
    Jensen, Christian D., Connell, P.O.: Trust-based route selection in dynamic source routing. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 150–163. Springer, Heidelberg (2006).  https://doi.org/10.1007/11755593_12CrossRefGoogle Scholar
  16. 16.
    Kacprzyk, J.: Group decision making with a fuzzy linguistic majority. Fuzzy Sets Syst. 18, 105–118 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luftdaten homepage: https://luftdaten.info/
  18. 18.
    McKnight, D.H., Chervany N.L.: The Meanings of Trust. In: University of Minnesota (1996). http://www.misrc.umn.edu/wpaper/wp96-04.htm
  19. 19.
    Nafi, K.W., Shekha kar, T., Hossain, A., Hashem, M.M.A.: An advanced certain trust model using fuzzy logic and probabilistic logic theory. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 3(12) (2012)Google Scholar
  20. 20.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://bitcoin.org/bitcoin.pdf. Accessed 18 Dec 2018
  21. 21.
    Osborne, J.W.: Best Practices in Data Cleaning: A Complete Guide to Everything You Need to Do Before and After Collecting Your Data. Sage Publications (2012). ISBN: 978-1412988018Google Scholar
  22. 22.
    Pastuszak, J., Orłowski, C.: Model of Rules for IT Organization Evolution. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence IX. LNCS, vol. 7770, pp. 55–78. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36815-8_3CrossRefGoogle Scholar
  23. 23.
    Resnick, P., Zeckhauser, R., Friedman, R., Kuwabara, K.: Reputation systems. Commun. ACM 43(12), 45 (2000)CrossRefGoogle Scholar
  24. 24.
    Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39718-2_23CrossRefGoogle Scholar
  25. 25.
    Rodríguez, R., Martınez, S., Herrera, F.: A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inf. Sci. 241, 28–42 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rodríguez, R.M., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20, 109–119 (2012)CrossRefGoogle Scholar
  27. 27.
    Wang, J.H., Hao, J.: A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 14(3), 435–445 (2006)CrossRefGoogle Scholar
  28. 28.
    Wierzbicki, A.: Trust and Fairness in Open, Distributed Systems. Studies in Computational Intelligence, vol. 298. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13451-7. ISBN: 978-3-642-13450-0CrossRefGoogle Scholar
  29. 29.
    Wu, Z.B., Xu, J.P.: Possibility distribution-based approach for MAGDM With hesitant fuzzy linguistic information. IEEE Trans. Cybern. 46, 694–705 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.WSB University in GdańskGdańskPoland
  2. 2.University of Science and Technology (UTP)BydgoszczPoland

Personalised recommendations