Advertisement

Improving Judgment Reliability in Social Networks via Jury Theorems

  • Paolo Galeazzi
  • Rasmus K. RendsvigEmail author
  • Marija Slavkovik
Conference paper
  • 275 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11813)

Abstract

Opinion aggregators—such as ‘like’ or ‘retweet’ counters—are ubiquitous on social media platforms and often treated as implicit quality evaluations of the entry liked or retweeted, with higher counts indicating higher quality. Many such aggregators are poor quality evaluators as they allow disruptions of the conditions for positive wisdom-of-the-crowds effects. This paper proposes a design of theoretically justified aggregators that improve judgment reliability. Interpreting states of diffusion processes on social networks as implicit voting scenarios, we specify procedures for isolating sets of independent voters in order to use jury theorems to quantify the reliability of network states as quality evaluators. As real-world networks tend to grow very large and independence tests are computationally expensive, a primary goal is to limit the number of such tests. We consider five procedures, each trading a degree of reliability for efficiency, the most efficient requiring a low-degree polynomial number of tests.

Notes

Acknowledgments

We thank the reviewers of LORI-VII and the participants of the Social Interactions in Epistemology and in Economics conference (Cph, 29-31/5/2019) for insightful comments. The Center for Information and Bubble Studies is funded by the Carlsberg Foundation. RKR was partially supported by the DFG-ANR joint project Collective Attitude Formation [RO 4548/8-1].

References

  1. 1.
    Brake, D.R.: Are we all online content creators now? Web 2.0 and digital divides*. J. Comput.-Mediated Commun. 19(3), 591–609 (2014)CrossRefGoogle Scholar
  2. 2.
    Gagliardi, A., Jadad, A.R.: Examination of instruments used to rate quality of health information on the internet: chronicle of a voyage with an unclear destination. BMJ 324(7337), 569–573 (2002)CrossRefGoogle Scholar
  3. 3.
    Chumber, S., Huber, J., Ghezzi, P.: A methodology to analyze the quality of health information on the internet: the example of diabetic neuropathy. Diab. Educ. 41(1), 95–105 (2015)CrossRefGoogle Scholar
  4. 4.
    Greenberg, L., D’Andrea, G., Lorence, D.: Setting the public agenda for online health search: a white paper and action agenda. J. Med. Internet Res. 6(2), e18 (2004)CrossRefGoogle Scholar
  5. 5.
    Lazer, D.M.J., et al.: The science of fake news. Science 359(6380), 1094–1096 (2018)CrossRefGoogle Scholar
  6. 6.
    Hendricks, V.F., Vestergaard, M.: Reality Lost: Markets of Attention. Misinformation and Manipulation. Springer, Heidelberg (2019)CrossRefGoogle Scholar
  7. 7.
    Muchnik, L., Aral, S., Taylor, S.J.: Social influence bias: a randomized experiment. Science 341(6146), 647–651 (2013)CrossRefGoogle Scholar
  8. 8.
    Berger, J., Milkman, K.L.: What makes online content viral? J. Mark. Res. 49(2), 192–205 (2012)CrossRefGoogle Scholar
  9. 9.
    Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun. ACM 59(7), 96–104 (2016)CrossRefGoogle Scholar
  10. 10.
    Condorcet, M.M.d.: Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix. Paris (1785)Google Scholar
  11. 11.
    Grofman, B., Owen, G., Feld, S.L.: Thirteen theorems in search of the truth. Theor. Decis. 15(3), 261–278 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ladha, K.K.: Information pooling through majority-rule voting: Condorcet’s Jury Theorem with correlated votes. J. Econ. Behav. Organ. 26(3), 353–372 (1995)CrossRefGoogle Scholar
  13. 13.
    Berend, D., Sapir, L.: Monotonicity in Condorcet’s Jury Theorem with dependent voters. Soc. Choice Welf. 28(3), 507–528 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pivato, M.: Epistemic democracy with correlated voters. J. Math. Econ. 72, 51–69 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wakker, P.: Prospect Theory. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  16. 16.
    Ben-Yashar, R., Paroush, J.: A nonasymptotic Condorcet Jury Theorem. Soc. Choice Welf. 17(2), 189–199 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Berend, D., Sapir, L.: Monotonicity in condorcet jury theorem. Soc. Choice Welf. 24(1), 83–92 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dietricht, F., Spiekermann, K.: Jury Theorems. In: Fricker, M., Graham, P.J., Henderson, D., Pedersen, N., Wyatt, J. (eds.) The Routledge Companion to Social Epistemology. Routledge (2019)Google Scholar
  19. 19.
    Kaniovski, S.: Aggregation of correlated votes and Condorcet’s Jury Theorem. Theor. Decis. 69(3), 453–468 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Acharya, J., Daskalakis, C., Kamath, G.: Optimal testing for properties of distributions. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 3591–3599. Curran Associates, Inc. (2015)Google Scholar
  21. 21.
    Kleinberg, J., Tardos, E.: Algorithm Design. Pearson (2005)Google Scholar
  22. 22.
    Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf. Comput. 255, 126–146 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Paolo Galeazzi
    • 1
  • Rasmus K. Rendsvig
    • 1
    Email author
  • Marija Slavkovik
    • 2
  1. 1.Center for Information and Bubble StudiesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Information Science and Media StudiesUniversity of BergenBergenNorway

Personalised recommendations