Advertisement

Skill your Will

  • Ruth Metten
Chapter
  • 27 Downloads

Zusammenfassung

In diesem Kapitel geht es darum, wie wir unseren freien Willen bilden können. Und das ist etwas knifflig. Immens viele unserer Entscheidungen werden nämlich unbewusst – sozusagen im Autopilot-Modus – getroffen. Doch wir sind seiner Steuerung nicht auf Gedeih und Verderb ausgeliefert. Denn wir haben ihn – den bewussten freien Willen. Dieser lässt sich trainieren, indem wir uns in Achtsamkeit und Selbsthypnose üben. Die beiden sind ein wahres „dream team“ für dieses „Skill your will“. Mit ihnen lässt sich unser bewusster freier Wille aus dem Dornröschenschlaf des Mindwanderings – Gedankenwanderns – wecken, um automatisierte Muster und damit auch unser „Ich“ zu verändern …

Literatur

  1. Badre, D., & D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierachical? Nature Reviews Neuroscience, 10, 659–669.CrossRefGoogle Scholar
  2. Baumeister, R., & Tierney, J. (2014). Die Macht der Disziplin – Wie wir unseren Willen trainieren können. München: Goldmann.Google Scholar
  3. Böker, H., & Northoff, G. (2016). Dreidimensionales neuropsychodynamisches Modell psychischer Krankheit. In H. Böker, P. Hartwich & G. Northoff (Hrsg.), Neuropsychodynamische Psychiatrie (S. 67–84). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  4. Brakowski, J., Spinelli, S., Dörig, N., Bosch, O. G., Manoliu, A., Holtforth, M. G., & Seifritz, E. (2017). Resting state brain network function in major depression–Depression symptomatology, antidepressant treatment effects, future research. Journal of Psychiatric Research, 92, 147–159.CrossRefGoogle Scholar
  5. Brass, M., Lynn, M. T., Demanet, J., & Rigoni, D. (2013). Imaging volition: What the brain can tell us about the will. Experimental Brain Research, 229(3), 301–312.CrossRefGoogle Scholar
  6. Broche-Pérez, Y., Jiménez, L. H., & Omar-Martínez, E. (2016). Neural substrates of decision-making. Neurología (English Edition), 31(5), 319–325.CrossRefGoogle Scholar
  7. Brown, J. W. (2017). Models of anterior cingulate cortex function in cognitive control. In T. Egner (Hrsg.), The Wiley handbook of cognitive control (S. 259–273). Chichester: Wiley.CrossRefGoogle Scholar
  8. Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences, 106(21), 8719–8724.CrossRefGoogle Scholar
  9. Christoff, K., Irving, Z. C., K, F., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718–731.CrossRefGoogle Scholar
  10. Clarke, D. D., & Skoloff, L. (1999). Circulation and energy metabolism of the brain. In G. J. Siegel, B. W. Agranoff, R. W. Albers, S. K. Fisher & M. D. Uhler (Hrsg.), Basic neurochemestry: Molecular, cellular and medical aspects (S. 638–640). Philadelphia: Lippincott-Raven.Google Scholar
  11. Crockett, M. J., Braams, B. R., Clark, L., Tobler, P. N., Robbins, T. W., & Kalenscher, T. (2013). Restricting temptations: Neural mechanisms of precommitment. Neuron, 79(2), 391–401.CrossRefGoogle Scholar
  12. D’Argembeau, A. (2018). Mind-wandering and self-referential thought. In K. C. Fox & K. Christoff (Hrsg.), The Oxford handbook of spontaneous thought (S. 181–191). New York: Oxford University Press.Google Scholar
  13. Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231–256.CrossRefGoogle Scholar
  14. Dixon, M. L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R. N., Cole, M., & Christoff, K. (2017). Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. bioRxiv, 178863, 1–28.Google Scholar
  15. Dosenbach, N., Visscher, K., Palmer, E., Miezin, F., Wenger, K., Kang, H., … Petersen, S. (2006). A core system for the implementation of task sets. Neuron, 50, 799–812.Google Scholar
  16. Dosenbach, N., Fair, D., Miezin, F., Cohen, A., Wenger, K., Dosenbach, R., … Petersen, S. (2007). Distinct brain networks for adaptive and stable task control in humans. PNAS, 104(26), 11073–11078.Google Scholar
  17. Duncan, N. W., Hayes, D. J., Wiebking, C., Tiret, B., Pietruska, K., Chen, D. Q., … Northoff, G. (2015). Negative childhood experiences alter a prefrontal-insular-motor cortical network in healthy adults: A preliminary multimodal rsfMRI-fMRI-MRS-dMRI study. Human Brain Mapping, 36(11), 4622–4637.Google Scholar
  18. Eckert, M., Menon, V., Walczak, A., Aflstrom, J., Denslow, S., Horwitz, A., & Dubno, J.(2009). At the heart of the ventral attention system: The right anterior insula. Human Brain Mapping, 30(8), 2530–2541.Google Scholar
  19. Frith, C. D. (2009). Free will and top-down control in the brain. In N. Murphy, G. F. Ellis & T. O’Connor (Hrsg.), Downward causation and the neurobiology of free will (S. 199). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  20. Gao, W., & Lin, W. (2012). Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping, 33(1), 192–202.CrossRefGoogle Scholar
  21. Gerlach, K. D., Spreng, R. N., Gilmore, A. W., & Schacter, D. L. (2011). Solving future problems: Default network and executive activity associated with goal-directed mental simulations. NeuroImage, 55(4), 1816–1824.CrossRefGoogle Scholar
  22. Gerlach, K. D., Spreng, R. N., Madore, K. P., & Schacter, D. L. (2014). Future planning: Default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Social Cognitive and Affective Neuroscience, 9, 1942–1951.CrossRefGoogle Scholar
  23. Ginot, E. (2015). The neuropsychology of the unconsciousness – Integrating bain and mind in psychotherapy. New York: W. W. Norton & Company.Google Scholar
  24. Goldberg, I. I., Harel, M., & Malach, R. (2006). When the brain loses its self: Prefrontal inactivation during sensorimotor processing. Neuron, 50(2), 329–339.CrossRefGoogle Scholar
  25. Haggard, P. (2017). Sense of agency in the human brain. Nature Reviews Neuroscience, 18(4), 197–208.CrossRefGoogle Scholar
  26. Harding, I. H., Yücel, M., Harrison, B. J., Pantelis, C., & Breakspear, M. (2015). Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory. NeuroImage, 106, 144–153.CrossRefGoogle Scholar
  27. Hobson, J. A., Pace-Schott, E. F., & Stickgold, R. (2000). Dreaming and the brain: Toward a cognitive neuroscience of conscious states. Behavioral and Brain Sciences, 23(6), 793–842.CrossRefGoogle Scholar
  28. Igamberdiev, A. U. (2012). Physics and logic of life. New York: Nova Science.Google Scholar
  29. James, W. (1950). The principles of psychology, Vol 1 u. 2. (republication of the work first published by Henry Holt and Company 1890). New York: Dover.Google Scholar
  30. James, W. (2001). Psychology: The briefer course (republication of the work first published by Henry Holt and Company 1892). New York: Dover.Google Scholar
  31. Jung, C. G. (1973). Symbole der Wandlung – Analyse des Vorspiels zu einer Schizophrenie. Olten: Walter.Google Scholar
  32. Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330(6006), 932.CrossRefGoogle Scholar
  33. Klinger, E., Koster, E. H., & Marchetti, I. (2018). Spontaneous thought and goal pursuit. In K. C. Fox & K. Christoff (Hrsg.), The Oxford handbook of spontaneous thought (S. 215–231). New York: Oxford University Press.Google Scholar
  34. Koch, C. (2013). Bewusstsein: Bekenntnisse eines Hirnforschers. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  35. Lynn, S. J., Surya Das, L., Hallquist, M. N., & Williams, J. C. (2006). Mindfulness, acceptance, and hypnosis: Cognitive and clinical perspectives. International Journal of Clinical and Experimental Hypnosis, 54, 2, S. 143-166.Google Scholar
  36. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & M. C. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315, 5810, S. 393-395.Google Scholar
  37. Metzinger, T. (2010). Der Ego Tunnel – Eine neue Philosophie des Selbst: Von der Hirnforschung zur Bewusstseinsethik. Berlin: Berlin Verlag GmbH.Google Scholar
  38. Nir, Y., & Tononi, G. (2010). Dreaming and the brain: From phenomenology to neurophysiology. Trends in Cognitive Sciences, 14(2), 88–100.CrossRefGoogle Scholar
  39. Northoff, G. (2014). Unlocking the brain: Vol. I. Coding. New York: Oxford University Press.Google Scholar
  40. Northoff, G. (2016). Neuro-philosophy and the healthy mind: Learning from the unwell brain. New York: W. W. Norton & Company.Google Scholar
  41. Northoff, G. (2018). How does the brain’s spontaneous activity generate our thoughts? The spatiotemporal theory of task-unrelated thought (STTT). In K. C. Fox & K. Christoff (Hrsg.), The Oxford handbook of spontaneous thought (S. 55–70). New York: Oxford University Press.Google Scholar
  42. Parlatini, V., Radua, J., Dell’Acqua, F., Leslie, A., Simmons, A., Murphy, D. G., … de Schotten, M. T. (2017). Functional segregation and integration within fronto-parietal networks. Neuroimage, 146, 367–375.Google Scholar
  43. Pepperell, R. (2018). Consciousness as a physical process caused by the organization of energy in the brain. Frontiers in Psychology, 9(2091), 1–11.Google Scholar
  44. Ploeger, A. (1983). Tiefenpsychologisch fundierte Psychodramatherapie. Stuttgart: Kohlhammer.Google Scholar
  45. Provost, J. S., & Monchi, O. (2015). Exploration of the dynamics between brain regions associated with the default-mode network and frontostriatal pathway with regards to task familiarity. European Journal of Neuroscience, 41(6), 835–844.CrossRefGoogle Scholar
  46. Reniers, R. L., Corcoran, R., Völlm, B. A., Mashru, A., Howard, R., & Liddle, P. F. (2012). Moral decision-making, ToM, empathy and the default mode network. Biological Psychology, 90(3), 202–210.CrossRefGoogle Scholar
  47. Ridderinkhof, K., van den Wildenberg, W., Segalowitz, S., & Carter, C. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56(2), 129–140.Google Scholar
  48. Roth, G., & Strüber, N. (2014). Wie das Gehirn die Seele macht. Stuttgart: Klett-Cotta.Google Scholar
  49. Shamloo, F., & Helie, S. (2016). Changes in default mode network as automaticity develops in a categorization task. Behavioural Brain Research, 313, 324–333.CrossRefGoogle Scholar
  50. Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487–518.CrossRefGoogle Scholar
  51. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53(1), 303–317.CrossRefGoogle Scholar
  52. Sridharan, D., Levitin, D., & Menon, V. (2008). A critical role of the right fronto-insular cortex in switching between ventral-executive and default-mode networks. PNAS, 105(34), 12569–12574.Google Scholar
  53. Stan, D., & Christoff, K. (2018). Unconstrained attention as a way into and a way out of psychological disharmony. In K. C. Fox & K. Christoff (Hrsg.), The Oxford handbook of spontaneous thought (S. 479–492). New York: Oxford University Press.Google Scholar
  54. Stawarczyk, D. (2018). Phenomenological properties of mind-wandering and daydreaming: A historical overview and functional correlates. In K. C. Fox & K. Christoff (Hrsg.), The Oxford handbook of spontaneous thoughts (S. 193–213). New York: Oxford University Press.Google Scholar
  55. Stawarczyk, D., Majerus, S., Maquet, P., & D’Argembeau, A. (2011). Neural correlates of ongoing conscious experience: Both task-unrelatedness and stimulus-independence are related to default network activity. PLoS One, 6(2), e16997, 1–14.Google Scholar
  56. Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5(42), 1–22.Google Scholar
  57. Tse, P. U. (2013). The neural basis of free will – Critical causation. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  58. Vatansever, D., Menon, D. K., & Stamatakis, E. A. (2017). Default mode contributions to automated information processing. Proceedings of the National Academy of Sciences, 114(48), 12821–12826.CrossRefGoogle Scholar
  59. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342.CrossRefGoogle Scholar
  60. Wöller, W., & Kruse, J. (2015). Maladaptive Verhaltensmuster waren einmal adaptiv. In W. Wöller & J. Kruse (Hrsg.), Tiefenpsychologisch fundierte Psychotherapie – Basisbuch und Praxisleitfaden (S. 152–159). Stuttgart: Schattauer.Google Scholar
  61. Wöller, W., Kruse, J., & Albus, C. (2015). Von der Klärung zur Deutung. In W. Wöller & J. Kruse (Hrsg.), Tiefenpsychologisch fundierte Psychotherapie – Basisbuch und Praxisleitfaden (S. 181–195). Stuttgart: Schattauer.Google Scholar
  62. Zedelius, C. M., & Schooler, J. W. (2018). Unraveling what’s on our minds. In K. C. Fox & K. Christoff (Hrsg.), The Oxford handbook of spontaneous thought (S. 233–247). New York: Oxford University Press.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Ruth Metten
    • 1
  1. 1.GemeinschaftspraxisKempenDeutschland

Personalised recommendations