Advertisement

Structure Sensitive Tier Projection: Applications and Formal Properties

  • Aniello De SantoEmail author
  • Thomas Graf
Conference paper
  • 79 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11668)

Abstract

The subregular approach has revealed that the phonological surface patterns found in natural language are much simpler than previously assumed. Most patterns belong to the subregular class of tier-based strictly local languages (TSL), which characterizes them as the combination of a strictly local dependency with a tier-projection mechanism that masks out irrelevant segments. Some non-TSL patterns have been pointed out in the literature, though. We show that these outliers can be captured by rendering the tier projection mechanism sensitive to the surrounding structure. We focus on a specific instance of these structure-sensitive TSL languages: input-local TSL (ITSL), in which the tier projection may distinguish between identical segments that occur in different local contexts in the input string. This generalization of TSL establishes a tight link between tier-based language classes and ISL transductions, and is motivated by several natural language phenomena.

Keywords

Subregular hypothesis TSL Phonotactics Input strictly local functions Generative capacity 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. BCS-1845344.

References

  1. 1.
    Aksenova, A., Deshmukh, S.: Formal restrictions on multiple tiers. Proc. Soc. Comput. Linguist. (SCiL) 20(18), 64–73 (2018)Google Scholar
  2. 2.
    Applegate, R.: Ineseno chumash grammar. Ph.D. thesis, UC Berkeley (1972)Google Scholar
  3. 3.
    Baek, H.: Computational representation of unbounded stress patterns: tiers with structural features. In: Proceedings of the 53rd Meeting of the Chicago Linguistic Society (CLS53) (2017)Google Scholar
  4. 4.
    Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chandlee, J.: Strictly local phonological processes. Ph.D. thesis, University of Delaware (2014)Google Scholar
  6. 6.
    Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions. Trans. ACL 2, 491–503 (2014)Google Scholar
  7. 7.
    Chandlee, J., Heinz, J.: Strict locality and phonological maps. Linguist. Inq. 49, 23–60 (2018)CrossRefGoogle Scholar
  8. 8.
    De Santo, A.: Commentary: developmental constraints on learning artificial grammars with fixed, flexible, and free word order. Front. Psychol. 9, 276 (2018)CrossRefGoogle Scholar
  9. 9.
    Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Cambridge (1974)zbMATHGoogle Scholar
  10. 10.
    Fu, J., Heinz, J., Tanner, H.G.: An algebraic characterization of strictly piecewise languages. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 252–263. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20877-5_26CrossRefzbMATHGoogle Scholar
  11. 11.
    Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goldsmith, J.: Autosegmental phonology. Ph.D. thesis, MIT, Cambridge (1976)Google Scholar
  13. 13.
    Graf, T.: The power of locality domains in phonology. Phonology 34(2), pp. 385–405 (2017).  https://doi.org/10.1017/S0952675717000197CrossRefGoogle Scholar
  14. 14.
    Graf, T.: Locality domains and phonological c-command over strings. In: 2017 Proceedings of NELS (2018). http://ling.auf.net/lingbuzz/004080
  15. 15.
    Graf, T., Mayer, C.: Sanskrit n-retroflexion is input-output tier-based strictly local. In: 2018 Proceedings of SIGMORPHON (2018)Google Scholar
  16. 16.
    Heinz, J.: The computational nature of phonological generalizations. In: Hyman, L., Plank, F. (eds.) Phonological Typology, chap. 5, pp. 126–195. Phonetics and Phonology, Mouton De Gruyter (2018)Google Scholar
  17. 17.
    Heinz, J., Rawal, C., Tanner, H.: Tier-based strictly local constraints for phonology. In: Proceedings of the ACL 49th: Human Language Technologies: Short Papers - vol. 2, pp. 58–64 (2011). http://dl.acm.org/citation.cfm?id=2002736.2002750
  18. 18.
    Heinz, J., Riggle, J.: Learnability. In: van Oostendorp, M., Ewen, C., Hume, B., Rice, K. (eds.) Blackwell Companion to Phonology. Wiley-Blackwell, Hoboken (2011)Google Scholar
  19. 19.
    Jäger, G., Rogers, J.: Formal language theory: refining the chomsky hierarchy. Philos. Trans. R. Soc. B: Biol. Sci. 367(1598), 1956–1970 (2012)CrossRefGoogle Scholar
  20. 20.
    Jardine, A.: Computationally, tone is different. Phonology (2016). http://udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf
  21. 21.
    Jardine, A., Heinz, J.: Learning tier-based strictly 2-local languages. Trans. ACL 4, 87–98 (2016). https://aclweb.org/anthology/Q/Q16/Q16-1007.pdfCrossRefGoogle Scholar
  22. 22.
    Jardine, A., McMullin, K.: Efficient learning of tier-based strictly k-local languages. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 64–76. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53733-7_4CrossRefGoogle Scholar
  23. 23.
    Mayer, C., Major, T.: A challenge for tier-based strict locality from Uyghur backness harmony. In: Foret, A., Kobele, G., Pogodalla, S. (eds.) FG 2018. LNCS, vol. 10950, pp. 62–83. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-57784-4_4CrossRefGoogle Scholar
  24. 24.
    McMullin, K.: Tier-based locality in long-distance phonotactics?: learnability and typology. Ph.D. thesis, University of British Columbia, February (2016).  https://doi.org/10.14288/1.0228114
  25. 25.
    McMullin, K., Aksënova, A., De Santo, A. (2019): Learning phonotactic restrictions on multiple tiers. Proc. SCiL 2(1), pp. 377–378 (2019).  https://doi.org/10.7275/s8ym-bx57
  26. 26.
    McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)zbMATHGoogle Scholar
  27. 27.
    Pin, J.E.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)CrossRefGoogle Scholar
  28. 28.
    Rogers, J., et al.: On languages piecewise testable in the strict sense. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 2007/2009. LNCS (LNAI), vol. 6149, pp. 255–265. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14322-9_19CrossRefGoogle Scholar
  29. 29.
    Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive and sub-regular complexity. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS, vol. 8036, pp. 90–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39998-5_6CrossRefGoogle Scholar
  30. 30.
    Rogers, J., Pullum, G.K.: Aural pattern recognition experiments and the subregular hierarchy. J. Logic Lang. Inf. 20(3), 329–342 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975).  https://doi.org/10.1007/3-540-07407-4_23CrossRefGoogle Scholar
  32. 32.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59126-6_7CrossRefGoogle Scholar
  33. 33.
    Walker, R.: Yaka nasal harmony: spreading or segmental correspondence? Annu. Meet. Berkeley Linguist. Soc. 26(1), 321–332 (2000).  https://doi.org/10.3765/bls.v26i1.1164CrossRefGoogle Scholar
  34. 34.
    Yli-Jyrä, A.: Contributions to the theory of finite-state based linguistic grammars. Ph.D. thesis, University of Helsinki (2005). http://www.ling.helsinki.fi/~aylijyra/dissertation/contribu.pdf

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of LinguisticsStony Brook UniversityStony BrookUSA

Personalised recommendations