Advertisement

A Topos-Based Approach to Building Language Ontologies

  • William BabonnaudEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11668)

Abstract

A common tendency in lexical semantics is to assume the existence of a hierarchy of types for fine-grained analyses of semantic phenomena. This paper provides a formal account of the existence of such a structure. A type system based on the categorical notion of topos is introduced, and is shown to be possibly adaptable to several existing formal approaches where such hierarchies are used. A refinement of the type hierarchy based on Fred Sommers’ ontological theory is also proposed.

Keywords

Formal semantics Lexical semantics Type theory Type ontology Category theory 

References

  1. 1.
    Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  2. 2.
    Asher, N., Pustejovsky, J.: A type composition logic for generative lexicon. J. Cogn. Sci. 7(1), 1–38 (2006)Google Scholar
  3. 3.
    Berry, G.: Some syntactic and categorical constructions of lambda-calculus models, RR-0080. Inria (1981)Google Scholar
  4. 4.
    Brown, R.: A First Language: The Early Stages. Harvard University Press, Cambridge (1973)CrossRefGoogle Scholar
  5. 5.
    Chatzikyriakidis, S., Luo, Z.: On the interpretation of common nouns: types versus predicates. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in Type-Theoretical Semantics. SLP, vol. 98, pp. 43–70. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50422-3_3CrossRefGoogle Scholar
  6. 6.
    Chomsky, N.: Some methodological remarks on generative grammar. Word 17(2), 219–239 (1961)CrossRefGoogle Scholar
  7. 7.
    Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2), 56–68 (1940)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Geeraerts, D.: Prototype theory. Linguistics 27(4), 587–612 (1989)CrossRefGoogle Scholar
  9. 9.
    Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Studies in Logic and the Foundations of Mathematics, vol. 98. North-Holland Publishings, Amsterdam (1979)zbMATHGoogle Scholar
  10. 10.
    Kiefer, F.: Some semantic relations in natural language. In: Josselson, H.H. (ed.) Proceedings of the Conference on Computer-related Semantic Analysis, pp. VII/1–23. Wayne State University, Detroit (1966)Google Scholar
  11. 11.
    La Palme Reyes, M., Macnamara, J., Reyes, G.E.: Reference, kinds and predicates. In: Macnamara, J., Reyes, G.E. (eds.) The Logical Foundations of Cognition, Vancouver Studies in Cognitive Science, vol. 4, pp. 91–143. Oxford University Press, Oxford (1994)Google Scholar
  12. 12.
    Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Li, N., Lutz, D. (eds.) Proceedings of SALT 20, vol. 20, pp. 38–56 (2010)CrossRefGoogle Scholar
  13. 13.
    Miller, G.A.: Nouns in WordNet. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 23–46. The MIT Press, Cambridge (1998)Google Scholar
  14. 14.
    Montague, R.: The proper treatment of quantification in ordinary english. In: Suppes, P., Moravcsik, J., Hintikka, J. (eds.) Approaches to Natural Language, pp. 221–242. Springer, Dordrecht (1973).  https://doi.org/10.1007/978-94-010-2506-5_10CrossRefGoogle Scholar
  15. 15.
    Pustejovsky, J.: The semantics of lexical underspecification. Folia Linguistica 32(3–4), 323–348 (1998)Google Scholar
  16. 16.
    Retoré, C.: The montagovian generative lexicon \(\Lambda Ty_n\): a type theoretical framework for natural language semantics. In: Matthes, R., Schubert, A. (eds.) Proceedings of the 19th International Conference on Types for Proofs and Programs. LIPICS, vol. 26, pp. 202–229 (2014)Google Scholar
  17. 17.
    Rosch, E.H.: Natural categories. Cogn. Psychol. 4, 328–350 (1973)CrossRefGoogle Scholar
  18. 18.
    Saba, W.S.: Logical semantics and commonsense knowledge: where did we go wrong, and how to go forward, again (2018). arXiv preprintGoogle Scholar
  19. 19.
    Seely, R.A.G.: Categorical semantics for higher order polymorphic lambda calculus. J. Symb. Logic 52(4), 969–989 (1987)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sommers, F.: The ordinary language tree. Mind 68(2), 160–185 (1959)CrossRefGoogle Scholar
  21. 21.
    Sommers, F.: Type and ontology. Philos. Rev. 72(3), 327–363 (1963)CrossRefGoogle Scholar
  22. 22.
    Sommers, F.: Structural ontology. Philosophia 1(1–2), 21–42 (1971)CrossRefGoogle Scholar
  23. 23.
    Suzman, J.: The ordinary language lattice. Mind 81(3), 434–436 (1972)CrossRefGoogle Scholar
  24. 24.
    Westerhoff, J.: The construction of ontological categories. Australas. J. Philos. 82(4), 595–620 (2004)CrossRefGoogle Scholar
  25. 25.
    Wittgenstein, L.: Philosophical Investigations. Macmillan, New York (1953)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LORIA, Université de Lorraine, CNRS, Inria Nancy Grand EstNancyFrance

Personalised recommendations