Quantitative Methods for Investigating Dissociation of Fluorescently Labeled Lipids from Drug Delivery Liposomes

  • Rasmus Münter
  • Kasper Kristensen
  • Dennis Pedersbæk
  • Thomas L. Andresen
  • Jens B. Simonsen
  • Jannik B. LarsenEmail author


A key prerequisite for image-based research on nanocarriers for drug delivery is that the recorded fluorescence can be accurately assigned to originate from the nanocarrier in question. For liposomal nanocarriers, fluorescent labeling is typically achieved by labeling a minority of the lipid species making up the liposome. Early work determined that lipid species can transfer between membrane components within a solution, nevertheless the fluorescently labeled lipids (FLLs) of drug delivery liposomes are intrinsically assumed to stay associated with the liposome, even when placed in a biological environment. To efficiently test this assumption, routine methods capable of investigating the dissociation of FLLs from liposomes should be implemented. Here we present two experimental methodologies able to quantitatively characterize the degree of FLL dissociation from liposomes when subjected to human blood plasma, mimicking the biological environment experienced by the carrier when travelling in the human body. Routine implementation of such methodologies could facilitate the appropriate selection of FLLs displaying low liposome dissociation, hereby facilitating more reliable liposomal uptake and trafficking studies.


  1. 1.
    Sercombe L et al (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:13CrossRefGoogle Scholar
  2. 2.
    Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29CrossRefGoogle Scholar
  3. 3.
    Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9:33CrossRefGoogle Scholar
  4. 4.
    Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48CrossRefGoogle Scholar
  5. 5.
    Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999CrossRefGoogle Scholar
  6. 6.
    Mouritsen OG (2011) Lipids, curvature, and nano-medicine. Eur J Lipid Sci Technol 113:1174–1187CrossRefGoogle Scholar
  7. 7.
    Landesman-Milo D, Peer D (2016) Transforming Nanomedicines from lab scale production to novel clinical modality. Bioconjug Chem 27:855–862CrossRefGoogle Scholar
  8. 8.
    Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:12Google Scholar
  9. 9.
    Time to deliver (2014) Nat Biotechnol 32:961–961Google Scholar
  10. 10.
    Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751CrossRefGoogle Scholar
  11. 11.
    Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151CrossRefGoogle Scholar
  12. 12.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951CrossRefGoogle Scholar
  13. 13.
    Hwang JY, Li Z, Loh XJ (2016) Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Adv 6:70592–70615CrossRefGoogle Scholar
  14. 14.
    Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRefGoogle Scholar
  15. 15.
    Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315CrossRefGoogle Scholar
  16. 16.
    Nag OK, Awasthi V (2013) Surface engineering of liposomes for stealth behavior. Pharmaceutics 5:542–569CrossRefGoogle Scholar
  17. 17.
    Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine 8:1509–1528CrossRefGoogle Scholar
  18. 18.
    Riaz MK et al (2018) Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci 19:1–27CrossRefGoogle Scholar
  19. 19.
    Mamot C et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638CrossRefGoogle Scholar
  20. 20.
    Wu J, Liu Q, Lee RJ (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316:148–153CrossRefGoogle Scholar
  21. 21.
    Ducat E, Evrard B, Peulen O, Piel G (2011) Cellular uptake of liposomes monitored by confocal microscopy and flow cytometry. J Drug Delivery Sci Technol 21:469–477CrossRefGoogle Scholar
  22. 22.
    Tall AR (1980) Studies on the transfer of phosphatidylcholine from unilamellar vesicles into plasma high density lipoproteins in the rat. J Lipid Res 21:354–363Google Scholar
  23. 23.
    Tall AR (1986) Plasma lipid transfer proteins. Annu Rev Biochem 27:361–367Google Scholar
  24. 24.
    Parr MJ, Ansell SM, Choi LS, Cullis PR (1994) Factors influencing the retention and chemical-stability of poly(ethylene glycol)-lipid conjugates incorporated into large unilamellar vesicles. BBA-Biomembranes 1195:21–30CrossRefGoogle Scholar
  25. 25.
    Li WM, Xue L, Mayer LD, Bally MB (2001) Intermembrane transfer of polyethylene glycol-modified phosphatidylethanolamine as a means to reveal surface-associated binding ligands on liposomes. Biochim Biophys Acta Biomembr 1513:193–206CrossRefGoogle Scholar
  26. 26.
    Silvius JR, Zuckermann MJ (1993) Interbilayer transfer of phospholipid-anchored macromolecules via monomer diffusion. Biophys J 64:A73–A73Google Scholar
  27. 27.
    Snipstad S et al (2017) Labeling nanoparticles: dye leakage and altered cellular uptake. Cytometry A 91:760–766CrossRefGoogle Scholar
  28. 28.
    Münter R et al (2018) Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. Nanoscale 10:22720–22724CrossRefGoogle Scholar
  29. 29.
    Israelachvili JN (2015) Intermolecular and surface forces. Elsevier Science, AmsterdamGoogle Scholar
  30. 30.
    Kraft JC, Freeling JP, Wang Z, Ho RJY (2014) Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 103:29–52CrossRefGoogle Scholar
  31. 31.
    Simões S et al (2005) Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2:237–254CrossRefGoogle Scholar
  32. 32.
    Wagner A, Vorauer-Uhl K (2011) Liposome technology for industrial purposes. J Drug Delivery Sci Technol 2011:591325Google Scholar
  33. 33.
    Charcosset C, Juban A, Valour JP, Urbaniak S, Fessi H (2015) Preparation of liposomes at large scale using the ethanol injection method: effect of scale-up and injection devices. Chem Eng Res Des 94:508–515CrossRefGoogle Scholar
  34. 34.
    Larsen J, Hatzakis NS, Stamou D (2011) Observation of inhomogeneity in the lipid composition of individual nanoscale liposomes. J Am Chem Soc 133:10685–10687CrossRefGoogle Scholar
  35. 35.
    Grit M, de Smidt JH, Struijke A, Crommelin DJA (1989) Hydrolysis of phosphatidylcholine in aqueous liposome dispersions. Int J Pharm 50:1–6CrossRefGoogle Scholar
  36. 36.
    Mayer LD, Hope MJ, Cullis PR, Janoff AS (1985) Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta Biomembr 817:193–196CrossRefGoogle Scholar
  37. 37.
    Traikia M, Warschawski DE, Recouvreur M, Cartaud J, Devaux PF (2000) Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and P-31-nuclear magnetic resonance. Eur Biophys J Biophys Lett 29:184–195CrossRefGoogle Scholar
  38. 38.
    Hayakawa E, Nakakura M, Kato Y, Okubo Y, Hosokawa T (1991) Encapsulation of doxorubicin into liposomes by a freeze-thawing method using buffer solution. Chem Pharm Bull 39:773–776CrossRefGoogle Scholar
  39. 39.
    Xu X, Khan MA, Burgess DJ (2012) Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm 423:410–418CrossRefGoogle Scholar
  40. 40.
    Costa AP, Xu X, Burgess DJ (2014) Freeze-anneal-thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm Res 31:97–103CrossRefGoogle Scholar
  41. 41.
    Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102CrossRefGoogle Scholar
  42. 42.
    Szleifer I, Gerasimov OV, Thompson DH (1998) Spontaneous liposome formation induced by grafted poly(ethylene oxide) layers: theoretical prediction and experimental verification. Proc Natl Acad Sci 95:1032CrossRefGoogle Scholar
  43. 43.
    Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ (2007) Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 23:11677–11683CrossRefGoogle Scholar
  44. 44.
    Pons M, Foradada M, Estelrich J (1993) Liposomes obtained by the ethanol injection method. Int J Pharm 95:51–56CrossRefGoogle Scholar
  45. 45.
    Zumbuehl O, Weder HG (1981) Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. Biochim Biophys Acta Biomembr 640:252–262CrossRefGoogle Scholar
  46. 46.
    Jiskoot W, Teerlink T, Beuvery EC, Crommelin DJA (1986) Preparation of liposomes via detergent removal from mixed micelles by dilution – the effect of bilayer composition and process parameters on liposome characteristics. Pharm Weekbl -Scientific Edition 8:259–265CrossRefGoogle Scholar
  47. 47.
    Lévy D, Bluzat A, Seigneuret M, Rigaud J-L (1990) A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal. Biochim Biophys Acta Biomembr 1025:179–190CrossRefGoogle Scholar
  48. 48.
    Ollivon M, Lesieur S, Grabielle-Madelmont C, Paternostre MT (2000) Vesicle reconstitution from lipid–detergent mixed micelles. Biochim Biophys Acta Biomembr 1508:34–50CrossRefGoogle Scholar
  49. 49.
    Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta Biomembr 1666:105–117CrossRefGoogle Scholar
  50. 50.
    Bhattacharjee S (2016) DLS and zeta potential – what they are and what they are not? J Control Release 235:337–351CrossRefGoogle Scholar
  51. 51.
    Smith MC, Crist RM, Clogston JD, McNeil SE (2017) Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem 409:5779–5787CrossRefGoogle Scholar
  52. 52.
    Jeschek D, Lhota G, Wallner J, Vorauer-Uhl K (2016) A versatile, quantitative analytical method for pharmaceutical relevant lipids in drug delivery systems. J Pharm Biomed Anal 119:37–44CrossRefGoogle Scholar
  53. 53.
    Shibata H, Yomota C, Okuda H (2013) Simultaneous determination of polyethylene glycol-conjugated liposome components by using reversed-phase high-performance liquid chromatography with UV and evaporative light scattering detection. AAPS PharmSciTech 14:811–817CrossRefGoogle Scholar
  54. 54.
    Zhong Z, Ji Q, Zhang JA (2010) Analysis of cationic liposomes by reversed-phase HPLC with evaporative light-scattering detection. J Pharm Biomed Anal 51:947–951CrossRefGoogle Scholar
  55. 55.
    Stewart JCM (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14CrossRefGoogle Scholar
  56. 56.
    Itoh YH, Itoh T, Kaneko H (1986) Modified Bartlett assay for microscale lipid phosphorus analysis. Anal Biochem 154:200–204CrossRefGoogle Scholar
  57. 57.
    Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A (2016) High-density lipoproteins: nature’s multifunctional nanoparticles. ACS Nano 10:3015–3041CrossRefGoogle Scholar
  58. 58.
    Simonsen JB (2017) What are we looking at? Extracellular vesicles, lipoproteins, or both? Circ Res 121:920–922CrossRefGoogle Scholar
  59. 59.
    Grabielle-Madelmont C, Lesieur S, Ollivon M (2003) Characterization of loaded liposomes by size exclusion chromatography. J Biochem Biophys Methods 56:189–217CrossRefGoogle Scholar
  60. 60.
    Hess JR (2010) Conventional blood banking and blood component storage regulation: opportunities for improvement. Blood Transfus 8(Suppl 3):s9–s15Google Scholar
  61. 61.
    Larsen JB et al (2015) Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat Chem Biol 11:192–U176CrossRefGoogle Scholar
  62. 62.
    Elizondo E et al (2012) Influence of the preparation route on the supramolecular organization of lipids in a vesicular system. J Am Chem Soc 134:1918–1921CrossRefGoogle Scholar
  63. 63.
    Hatzakis NS et al (2009) How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat Chem Biol 5:835–841CrossRefGoogle Scholar
  64. 64.
    Bhatia VK, Hatzakis NS, Stamou D (2010) A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 21:381–390CrossRefGoogle Scholar
  65. 65.
    Reed CF (1968) Phospholipid exchange between plasma and erythrocytes in man and the dog. J Clin Invest 47:749–760CrossRefGoogle Scholar
  66. 66.
    Wirtz KWA, Zilversmit DB (1968) Exchange of phospholipids between liver mitochondria and microsomes in vitro. J Biol Chem 243:3596–3602Google Scholar
  67. 67.
    Martin FJ, MacDonald RC (1976) Phospholipid exchange between bilayer membrane vesicles. Biochemistry 15:321–327CrossRefGoogle Scholar
  68. 68.
    Jones JD, Thompson TE (1989) Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid-concentration. Biochemistry 28:129–134CrossRefGoogle Scholar
  69. 69.
    Jones JD, Thompson TE (1990) Mechanism of spontaneous, concentration-dependent phospholipid transfer between bilayers. Biochemistry 29:1593–1600CrossRefGoogle Scholar
  70. 70.
    Brown RE (1992) Spontaneous lipid transfer between organized lipid assemblies. Biochim Biophys Acta 1113:375–389CrossRefGoogle Scholar
  71. 71.
    Pownall HJ, Bick DLM, Massey JB (1991) Spontaneous phospholipid transfer – development of a quantitative model. Biochemistry 30:5696–5700CrossRefGoogle Scholar
  72. 72.
    Simonsson C et al (2016) Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules. Eur J Pharm Biopharm 98:47–56CrossRefGoogle Scholar
  73. 73.
    Petersen S, Fahr A, Bunjes H (2010) Flow cytometry as a new approach to investigate drug transfer between lipid particles. Mol Pharm 7:350–363CrossRefGoogle Scholar
  74. 74.
    Bastiat G et al (2013) A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging. J Control Release 170:334–342CrossRefGoogle Scholar
  75. 75.
    Ambegia E et al (2005) Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. BBA-Biomembranes 1669:155–163CrossRefGoogle Scholar
  76. 76.
    Zhu T, Jiang ZY, Ma YQ (2012) Lipid exchange between membranes: effects of membrane surface charge, composition, and curvature. Colloids Surf B Biointerfaces 97:155–161CrossRefGoogle Scholar
  77. 77.
    Liu B, Thayumanavan S (2017) Importance of evaluating dynamic encapsulation stability of amphiphilic assemblies in serum. Biomacromolecules 18:4163–4170CrossRefGoogle Scholar
  78. 78.
    Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223:42–46CrossRefGoogle Scholar
  79. 79.
    Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237CrossRefGoogle Scholar
  80. 80.
    Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity invivo. Biochim Biophys Acta 1146:157–168CrossRefGoogle Scholar
  81. 81.
    Allen C et al (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 22:225–250CrossRefGoogle Scholar
  82. 82.
    Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478CrossRefGoogle Scholar
  83. 83.
    Dos Santos N et al (2007) Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. BBA-Biomembranes 1768:1367–1377CrossRefGoogle Scholar
  84. 84.
    Butcher NJ, Mortimer GM, Minchin RF (2016) Unravelling the stealth effect. Nat Nanotechnol 11:310–311CrossRefGoogle Scholar
  85. 85.
    Adhikari P et al (2017) Nano lipid-drug conjugate: an integrated review. Int J Pharm 529:629–641CrossRefGoogle Scholar
  86. 86.
    Irby D, Du CG, Li F (2017) Lipid-drug conjugate for enhancing drug delivery. Mol Pharm 14:1325–1338CrossRefGoogle Scholar
  87. 87.
    Du R et al (2014) Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomedicine 9:3091–3105Google Scholar
  88. 88.
    Pedersen PJ et al (2009) Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs. J Med Chem 52:3408–3415CrossRefGoogle Scholar
  89. 89.
    Kuznetsova NR et al (2014) Targeting liposomes loaded with melphalan prodrug to tumour vasculature via the Sialyl Lewis X selectin ligand. J Drug Target 22:242–250CrossRefGoogle Scholar
  90. 90.
    Nardin A, Lefebvre ML, Labroquere K, Faure O, Abastado JP (2006) Liposomal muramyl tripeptide phosphatidylethanolamine: targeting and activating macrophages for adjuvant treatment of osteosarcoma. Curr Cancer Drug Targets 6:123–133CrossRefGoogle Scholar
  91. 91.
    Frampton JE (2010) Mifamurtide: a review of its use in the treatment of osteosarcoma. Paediatr Drugs 12:141–153CrossRefGoogle Scholar
  92. 92.
    Silvius JR, Leventis R (1993) Spontaneous interbilayer transfer of phospholipids – dependence on acyl-chain composition. Biochemistry 32:13318–13326CrossRefGoogle Scholar
  93. 93.
    Hughes LD, Rawle RJ, Boxer SG (2014) Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS One 9:e87649CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rasmus Münter
    • 1
    • 2
  • Kasper Kristensen
    • 1
    • 2
  • Dennis Pedersbæk
    • 1
    • 2
  • Thomas L. Andresen
    • 1
    • 2
  • Jens B. Simonsen
    • 1
    • 2
  • Jannik B. Larsen
    • 1
    • 2
    Email author
  1. 1.Center for Nanomedicine and TheranosticsTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of Health Technology (DTU Healthtech)Technical University of DenmarkLyngbyDenmark

Personalised recommendations