Advertisement

Open-Channel Separation Techniques for the Characterization of Nanomaterials and Their Bioconjugates for Drug Delivery Applications

  • Jiwon Lee
  • Roxana Coreas
  • Wenwan ZhongEmail author
Chapter

Abstract

Open-channel separation techniques can separate samples without reliance on column packing, minimizing sample loss due to adsorption onto the packing materials and reducing damage to samples, in particular, the complexes held together by non-chemical interactions. Field flow fractionation (FFF) and capillary electrophoresis (CE) are two representative open-channel separation techniques. In this chapter, we discuss the use of FFF and CE to separate and characterize various nanomaterials widely applied in biomedical research.

Notes

Acknowledgments

The authors thank the support from the National Institute of Environmental Health Sciences of the National Institutes of Health under the Award #U01ES027293 (to W. Z.) and T32ES018827 (to R. C.).

References

  1. 1.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97.  https://doi.org/10.1038/nbt920CrossRefGoogle Scholar
  2. 2.
    So M-K, Xu C, Loening AM, Gambhur SS, Rao J (2006) Self-illuminating quantum dots aid in vivo imaging. Nat Biotechnol 24:339–343.  https://doi.org/10.1038/nbt1188CrossRefGoogle Scholar
  3. 3.
    Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chemie – Int Ed 47:5362–5365.  https://doi.org/10.1002/anie.200800857CrossRefGoogle Scholar
  4. 4.
    Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648Google Scholar
  5. 5.
    Wang Y, Sun Y, Wang J, Yang Y, Li Y, Yuan Y, Liu C (2016) Charge-reversal APTES-modified mesoporous silica nanoparticles with high drug loading and release controllability. ACS Appl Mater Interfaces 8:17166–17175.  https://doi.org/10.1021/acsami.6b05370CrossRefGoogle Scholar
  6. 6.
    Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831.  https://doi.org/10.1038/nmat1508CrossRefGoogle Scholar
  7. 7.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105:14265–14270.  https://doi.org/10.1073/pnas.0805135105CrossRefGoogle Scholar
  8. 8.
    Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781.  https://doi.org/10.1038/nnano.2013.181CrossRefGoogle Scholar
  9. 9.
    An H, Jin B (2012) Prospects of nanoparticle-DNA binding and its implications in medical biotechnology. Biotechnol Adv 30:1721–1732.  https://doi.org/10.1016/j.biotechadv.2012.03.007CrossRefGoogle Scholar
  10. 10.
    Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, del Puerto Morales M, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20:115103.  https://doi.org/10.1088/0957-4484/20/11/115103CrossRefGoogle Scholar
  11. 11.
    Westmeier D, Stauber RH, Docter D (2016) The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM). Toxicol Appl Pharmacol 299:53–57.  https://doi.org/10.1016/j.taap.2015.11.008CrossRefGoogle Scholar
  12. 12.
    Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA (2013) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed Nanotechnol Biol Med 9:1159–1168.  https://doi.org/10.1016/j.nano.2013.04.010CrossRefGoogle Scholar
  13. 13.
    Ke PC, Lin S, Parak WJ, Davis TP, Caruso F (2017) A decade of the protein corona. ACS Nano 11:11773CrossRefGoogle Scholar
  14. 14.
    Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055.  https://doi.org/10.1073/pnas.0608582104CrossRefGoogle Scholar
  15. 15.
    Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431.  https://doi.org/10.1021/acs.chemrev.5b00589CrossRefGoogle Scholar
  16. 16.
    Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810.  https://doi.org/10.1007/s11095-010-0073-2CrossRefGoogle Scholar
  17. 17.
    Wei GT, Liu F-K, Wang CRC (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71:2085–2091.  https://doi.org/10.1021/ac990044uCrossRefGoogle Scholar
  18. 18.
    Wilcoxon JP, Martin JE, Provencio P (2000) Size distributions of gold nanoclusters studied by liquid chromatography. Langmuir 16:9912–9920.  https://doi.org/10.1021/la000669jCrossRefGoogle Scholar
  19. 19.
    Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7:2881–2885.  https://doi.org/10.1021/nl071615yCrossRefGoogle Scholar
  20. 20.
    Xu X, Caswell KK, Tucker E, Kabisatpathy S, Brodhacker KL, Scrivens WA (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J Chromatogr A 1167:35–41.  https://doi.org/10.1016/j.chroma.2007.07.056CrossRefGoogle Scholar
  21. 21.
    Giddings JC (1966) A new separation concept based on a coupling of concentration and flow nonuniformities. Sep Sci 1:123–125.  https://doi.org/10.1080/01496396608049439. PublishedCrossRefGoogle Scholar
  22. 22.
    Giddings JC (1993) Field-flow fractionation – analysis of macromolecular, colloidal, and particulate materials. Science (80- ) 260:1456–1465.  https://doi.org/10.1126/science.8502990CrossRefGoogle Scholar
  23. 23.
    Liu MK, Li P, Giddings JC (1993) Rapid protein separation and diffusion coefficient measurement by frit inlet flow field-flow fractionation. Protein Sci 2:1520–1531.  https://doi.org/10.1002/pro.5560020917CrossRefGoogle Scholar
  24. 24.
    Giddings JC, Yang FJ, Myers MN (1977) Flow field-flow fractionation as a methodology for protein separation and characterization. Anal Biochem 81:395–407.  https://doi.org/10.1016/0003-2697(77)90710-2CrossRefGoogle Scholar
  25. 25.
    Liu MK, Giddings JC (1993) Separation and measurement of diffusion coefficients of linear and circular DNAs by flow field-flow fractionation. Macromolecules 26:3576–3588.  https://doi.org/10.1021/ma00066a016CrossRefGoogle Scholar
  26. 26.
    Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W (2014) Probing and quantifying DNA-protein interactions with asymmetrical flow field-flow fractionation. J Chromatogr A 1358:217–224.  https://doi.org/10.1016/j.chroma.2014.07.002CrossRefGoogle Scholar
  27. 27.
    Bousse T, Shore DA, Goldsmith CS, Hossain MJ, Jang Y, Davis CT, Donis RO, Stevens J (2013) Quantitation of influenza virus using field flow fractionation and multi-angle light scattering for quantifying influenza A particles. J Virol Methods 193:589–596.  https://doi.org/10.1016/j.jviromet.2013.07.026CrossRefGoogle Scholar
  28. 28.
    Giddings JC, Yang FJ, Myers MN (1977) Flow field-flow fractionation – new method for separating, purifying, and characterizing diffusivity of viruses. J Virol 21:131–138.  https://doi.org/10.1007/s11664-014-3204-4CrossRefGoogle Scholar
  29. 29.
    Flack K, Jimenez LA, Zhong W (2017) Analysis of the distribution profiles of circulating microRNAs by asymmetrical flow field flow fractionation. In: Rani S. (eds) MicroRNA profiling. Methods in molecular biology, vol 1509. Humana Press, New York, NY, pp 161–168Google Scholar
  30. 30.
    Wagner M, Pietsch C, Tauhardt L, Schallon A, Schubert US (2014) Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering-a comparison with traditional techniques. J Chromatogr A 1325:195–203.  https://doi.org/10.1016/j.chroma.2013.11.049CrossRefGoogle Scholar
  31. 31.
    Giddings JC (1973) The conceptual basis of field-flow fractionation. J Chem Educ 50:667.  https://doi.org/10.1021/ed050p667CrossRefGoogle Scholar
  32. 32.
    Kowalkowski T, Buszewski B, Cantado C, Dondi F (2006) Field-flow fractionation: theory, techniques, applications and the challenges. Crit Rev Anal Chem 36:129–135.  https://doi.org/10.1080/10408340600713702CrossRefGoogle Scholar
  33. 33.
    Contado C (2017) Field flow fractionation techniques to explore the “nano-world”. Anal Bioanal Chem 409:2501–2518.  https://doi.org/10.1007/s00216-017-0180-6CrossRefGoogle Scholar
  34. 34.
    Bednar AJ, Poda AR, Mitrano DM, Kennedy AJ, Gray EP, Ranville JF, Hayes CA, Crocker FH, Steevens JA (2013) Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta 104:140–148.  https://doi.org/10.1016/j.talanta.2012.11.008CrossRefGoogle Scholar
  35. 35.
    Schachermeyer S, Ashby J, Zhong W (2012) Advances in field-flow fractionation for the analysis of biomolecules: instrument design and hyphenation. Anal Bioanal Chem 404:1151–1158.  https://doi.org/10.1007/s00216-012-6069-5CrossRefGoogle Scholar
  36. 36.
    Szolar OHJ, Brown RS, Luong JHT (1995) Separation of PAHs by capillary electrophoresis with laser-induced fluorescence detection using mixtures of neutral and Anionic.beta.-cyclodextrins. Anal Chem 67:3004–3010.  https://doi.org/10.1021/ac00113a039CrossRefGoogle Scholar
  37. 37.
    Cheng HL, Liao YM, Chiou SS, Wu SW (2008) On-line stacking capillary electrophoresis for analysis of methotrexate and its eight metabolites in whole blood. Electrophoresis 29:3665–3673.  https://doi.org/10.1002/elps.200800029CrossRefGoogle Scholar
  38. 38.
    Sun L, Zhu G, Zhang Z, Mou S, Dovichi NJ (2015) Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. J Proteome Res 14:2312–2321.  https://doi.org/10.1021/acs.jproteome.5b00100CrossRefGoogle Scholar
  39. 39.
    Han F, Huynh BH, Ma Y, Lin B (1999) High-efficiency DNA separation by capillary electrophoresis in a polymer solution with ultralow viscosity. Anal Chem 71:2385–2389.  https://doi.org/10.1097/JCP.0b013e3182549d2dCrossRefGoogle Scholar
  40. 40.
    Nehme H, Nehme R, Lafite P, Routier S, Morin P (2012) New development in in-capillary electrophoresis techniques for kinetic and inhibition study of enzymes. Anal Chim Acta 722:127–135.  https://doi.org/10.1016/j.aca.2012.02.003CrossRefGoogle Scholar
  41. 41.
    Mattarozzi M, Suman M, Cascio C, Calestani D, Weigel S, Undas A, Peters R (2017) Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. Anal Bioanal Chem 409:63–80.  https://doi.org/10.1007/s00216-016-9946-5CrossRefGoogle Scholar
  42. 42.
    Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in complex samples: a comparison. Environ Eng Sci 30:118–125.  https://doi.org/10.3920/QAS2014.0410CrossRefGoogle Scholar
  43. 43.
    Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V (2014) Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng 2:1707–1716.  https://doi.org/10.1021/sc500175vCrossRefGoogle Scholar
  44. 44.
    Meermann B, Laborda F (2015) Analysis of nanomaterials by field-flow fractionation and single particle ICP-MS. J Anal At Spectrom 30:1226–1228.  https://doi.org/10.1039/c5ja90019kCrossRefGoogle Scholar
  45. 45.
    Chetwynd A, Guggenheim E, Briffa S, Thorn J, Lynch I, Valsami-Jones E (2018) Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona. Nanomaterials 8.  https://doi.org/10.3390/nano8020099CrossRefGoogle Scholar
  46. 46.
    Yohannes G, Jussila M, Hartonen K, Riekkola ML (2011) Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A 1218:4104–4116.  https://doi.org/10.1016/j.chroma.2010.12.110CrossRefGoogle Scholar
  47. 47.
    Giddings JC, Yang FJF, Myers MN (1976) Flow field-flow fractionation: a versatile new separation method. Science (80- ) 193:1244–1245CrossRefGoogle Scholar
  48. 48.
    Mudalige TK, Qu H, Sánchez-Pomales G, Sisco PN, Linder SW (2015) Simple functionalization strategies for enhancing nanoparticle separation and recovery with asymmetric flow field flow fractionation. Anal Chem 87:1764–1772.  https://doi.org/10.1021/ac503683nCrossRefGoogle Scholar
  49. 49.
    Rambaldi DC, Reschiglian P, Zattoni A (2011) Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 399:1439–1447.  https://doi.org/10.1007/s00216-010-4312-5CrossRefGoogle Scholar
  50. 50.
    Wahlund KG, Giddings JC (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59:1332–1339.  https://doi.org/10.1021/ac00136a016CrossRefGoogle Scholar
  51. 51.
    Mudalige TK, Qu H, Van Haute D, Ansar SM, Linder SW (2018) Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: a critical comparative review. TrAC – Trends Anal Chem 106:202–212.  https://doi.org/10.1016/j.trac.2018.07.008CrossRefGoogle Scholar
  52. 52.
    Schachermeyer S, Ashby J, Kwon M, Zhong W (2012) Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation. J Chromatogr A 1264:72–79.  https://doi.org/10.1016/j.chroma.2012.09.050CrossRefGoogle Scholar
  53. 53.
    Ashby J, Schachermeyer S, Pan S, Zhong W (2013) Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal Chem 85:7494–7501.  https://doi.org/10.1021/ac401485jCrossRefGoogle Scholar
  54. 54.
    Ashby J, Flack K, Jimenez LA, Duan Y, Khatib AK, Somlo G, Wang SE, Cui X, Zhong W (2014) Distribution profiling of circulating MicroRNAs in serum. Anal Chem 86:9343–9349.  https://doi.org/10.1021/ac5028929CrossRefGoogle Scholar
  55. 55.
    Chu YH, Avila LZ, Biebuyck HA, Whitesides GM (1992) Use of affinity capillary electrophoresis to measure binding constants of ligands to proteins. J Med Chem 35:2915–2917.  https://doi.org/10.1021/jm00093a027CrossRefGoogle Scholar
  56. 56.
    Chu Y-H, Avila LZ, Gao J, Whitesides GM (1995) Affinity capillary electrophoresis. Acc Chem Res 28:461–468.  https://doi.org/10.1021/ar00059a004CrossRefGoogle Scholar
  57. 57.
    Li N, Zeng S, He L, Zhong W (2010) Probing nanoparticle− protein interaction by capillary electrophoresis. Anal Chem 82:7460–7466CrossRefGoogle Scholar
  58. 58.
    Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T (1984) Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal Chem 56:111–113.  https://doi.org/10.1021/ac00265a031CrossRefGoogle Scholar
  59. 59.
    Liu FK, Wei GT (2004) Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis. Anal Chim Acta 510:77–83.  https://doi.org/10.1016/j.aca.2003.12.064CrossRefGoogle Scholar
  60. 60.
    Ciriello R, Iallorenzi PT, Laurita A, Guerrieri A (2017) Improved separation and size characterization of gold nanoparticles through a novel capillary zone electrophoresis method using poly(sodium4-styrenesulfonate) as stabiliser and a stepwise field strength gradient. Electrophoresis 38:922–929.  https://doi.org/10.1002/elps.201600478CrossRefGoogle Scholar
  61. 61.
    Kairdolf BA, Qian X, Nie S (2017) Bioconjugated nanoparticles for biosensing, in vivo imaging, and medical diagnostics. Anal Chem 89:1015–1031.  https://doi.org/10.1021/acs.analchem.6b04873CrossRefGoogle Scholar
  62. 62.
    Bazak R, Houri M, El Achy S, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784.  https://doi.org/10.1007/s00432-014-1767-3CrossRefGoogle Scholar
  63. 63.
    Hizir MS, Top M, Balcioglu M, Rana M, Robertson NM, Shen F, Sheng J, Yigit MV (2016) Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal Chem 88:600–605.  https://doi.org/10.1021/acs.analchem.5b03926CrossRefGoogle Scholar
  64. 64.
    Li H, Shen J, Cui R, Sun C, Zhao Y, Wu X, Li N, Tang B (2017) A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb(iii) complex and silver nanoparticles. Analyst 142:4240–4246.  https://doi.org/10.1039/c7an00961eCrossRefGoogle Scholar
  65. 65.
    Safenkova IV, Slutskaya ES, Panferov VG, Zherdev AV, Dzantiev BB (2016) Complex analysis of concentrated antibody-gold nanoparticle conjugates’ mixtures using asymmetric flow field-flow fractionation. J Chromatogr A 1477:56–63.  https://doi.org/10.1016/j.chroma.2016.11.040CrossRefGoogle Scholar
  66. 66.
    Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, Ranville JF, Steevens J (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225.  https://doi.org/10.1016/j.chroma.2010.12.076CrossRefGoogle Scholar
  67. 67.
    Tadjiki S, Montaño MD, Assemi S, Barber A, Ranville J, Beckett R (2017) Measurement of the density of engineered silver nanoparticles using centrifugal FFF-TEM and single particle ICP-MS. Anal Chem 89:6056–6064.  https://doi.org/10.1021/acs.analchem.7b00652CrossRefGoogle Scholar
  68. 68.
    Marassi V, Roda B, Casolari S, Ortelli S, Blosi M, Zattoni A, Costa AL, Reschiglian P (2018) Hollow-fiber flow field-flow fractionation and multi-angle light scattering as a new analytical solution for quality control in pharmaceutical nanotechnology. Microchem J 136:149–156.  https://doi.org/10.1016/j.microc.2016.12.015CrossRefGoogle Scholar
  69. 69.
    Marassi V, Casolari S, Roda B, Zattoni A, Reschiglian P, Panzavolta S, Tofail SAM, Ortelli S, Delpivo C, Blosi M, Costa AL (2015) Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment. J Pharm Biomed Anal 106:92–99.  https://doi.org/10.1016/j.jpba.2014.11.031CrossRefGoogle Scholar
  70. 70.
    Wimuktiwan P, Shiowatana J, Siripinyanond A (2015) Investigation of silver nanoparticles and plasma protein association using flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (FlFFF-ICP-MS). J Anal At Spectrom 30:245–253.  https://doi.org/10.1039/c4ja00225cCrossRefGoogle Scholar
  71. 71.
    Yu B, Zhou Y, Song M, Xue Y, Cai N, Luo X, Long S, Zhang H, Yu F (2016) Synthesis of selenium nanoparticles with mesoporous silica drug-carrier shell for programmed responsive tumor targeted synergistic therapy. RSC Adv 6:2171–2175.  https://doi.org/10.1039/c5ra21460bCrossRefGoogle Scholar
  72. 72.
    Zheng S, Li X, Zhang Y, Xie Q, Wong YS, Zheng W, Chen T (2012) PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int J Nanomedicine 7:3939–3949.  https://doi.org/10.2147/IJN.S30940CrossRefGoogle Scholar
  73. 73.
    M-M P, Somchue W, Shiowatana J, Siripinyanond A (2014) Flow field-flow fractionation for particle size characterization of selenium nanoparticles incubated in gastrointestinal conditions. Food Res Int 57:208–209.  https://doi.org/10.1016/j.foodres.2014.01.040CrossRefGoogle Scholar
  74. 74.
    Seabra A, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals (Basel) 5:934–975.  https://doi.org/10.3390/met5020934CrossRefGoogle Scholar
  75. 75.
    Peng N, Wu B, Wang L, He W, Ai Z, Zhang X, Wang Y, Fan L, Ye Q (2016) High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater Sci 4:1802–1813.  https://doi.org/10.1039/c6bm00504gCrossRefGoogle Scholar
  76. 76.
    Martínez-Carmona M, Gun’ko Y, Vallet-Regí M (2018) ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials 8.  https://doi.org/10.3390/nano8040268CrossRefGoogle Scholar
  77. 77.
    Bogdan J, Plawinska-Czarnak J, Zarzynska J (2017) Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: a review Janusz. Nanoscale Res Lett 12:225.  https://doi.org/10.1186/s11671-017-2007-yCrossRefGoogle Scholar
  78. 78.
    Ashby J, Pan S, Zhong W (2014) Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl Mater Interfaces 6:15412–15419.  https://doi.org/10.1021/am503909qCrossRefGoogle Scholar
  79. 79.
    Weber C, Simon J, Mailänder V, Morsbach S, Landfester K (2018) Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater 76:217–224.  https://doi.org/10.1016/j.actbio.2018.05.057CrossRefGoogle Scholar
  80. 80.
    Wang S, McGuirk CM, d’Aquino A, Mason JA, Mirkin CA (2018) Metal-organic framework nanoparticles. Adv Mater 30:1800202.  https://doi.org/10.1002/adma.201800202CrossRefGoogle Scholar
  81. 81.
    Roda B, Marassi V, Zattoni A, Borghi F, Anand R, Agostoni V, Gref R, Reschiglian P, Monti S (2018) Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal–organic framework nanoparticles. Anal Bioanal Chem 410:5245–5253.  https://doi.org/10.1007/s00216-018-1176-6CrossRefGoogle Scholar
  82. 82.
    Hinna AH, Hupfeld S, Kuntsche J, Brandl M (2016) The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics. J Pharm Biomed Anal 124:157–163.  https://doi.org/10.1016/j.jpba.2016.02.037CrossRefGoogle Scholar
  83. 83.
    Elgqvist J, Frost S, Pouget J-P, Albertsson P (2014) The potential and hurdles of targeted alpha therapy – clinical trials and beyond. Front Oncol 3:1–9.  https://doi.org/10.3389/fonc.2013.00324CrossRefGoogle Scholar
  84. 84.
    Huclier-Markai S, Grivaud-Le Du A, N’tsiba E, Montavon G, Mougin-Degraef M, Barbet J (2018) Coupling a gamma-ray detector with asymmetrical flow field flow fractionation (AF4): application to a drug-delivery system for alpha-therapy. J Chromatogr A 1573:107–114.  https://doi.org/10.1016/j.chroma.2018.08.065CrossRefGoogle Scholar
  85. 85.
    Moquin A, Neibert KD, Maysinger D, Winnik FM (2015) Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation. Eur J Pharm Biopharm 89:290–299.  https://doi.org/10.1016/j.ejpb.2014.12.019CrossRefGoogle Scholar
  86. 86.
    Bouzas-Ramos D, García-Cortes M, Sanz-Medel A, Encinar JR, Costa-Fernández JM (2017) Assessment of the removal of side nanoparticulated populations generated during one-pot synthesis by asymmetric flow field-flow fractionation coupled to elemental mass spectrometry. J Chromatogr A 1519:156–161.  https://doi.org/10.1016/j.chroma.2017.08.068CrossRefGoogle Scholar
  87. 87.
    Menéndez-Miranda M, Encinar JR, Costa-Fernández JM, Sanz-Medel A (2015) Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency. J Chromatogr A 1422:247–252.  https://doi.org/10.1016/j.chroma.2015.10.012CrossRefGoogle Scholar
  88. 88.
    Matczuk M, Anecka K, Scaletti F, Messori L, Keppler BK, Timerbaev AR, Jarosz M (2015) Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: a case study of gold nanoparticles. Metallomics 7:1364–1370.  https://doi.org/10.1039/c5mt00109aCrossRefGoogle Scholar
  89. 89.
    Belder D, Deege A, Husmann H, Kohler F, Ludwig M (2001) Cross-linked poly(vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis. Electrophoresis 22:3813–3818.  https://doi.org/10.1002/1522-2683(200109)22:17<3813::AID-ELPS3813>3.0.CO;2-DCrossRefGoogle Scholar
  90. 90.
    Matczuk M, Legat J, Shtykov SN, Jarosz M, Timerbaev AR (2016) Characterization of the protein corona of gold nanoparticles by an advanced treatment of CE-ICP-MS data. Electrophoresis 37:2257–2259.  https://doi.org/10.1002/elps.201600152CrossRefGoogle Scholar
  91. 91.
    Legat J, Matczuk M, Scaletti F, Messori L, Timerbaev A, Jarosz M (2017) Erratum to: CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates. Chromatographia 80:1719.  https://doi.org/10.1007/s10337-017-3410-3CrossRefGoogle Scholar
  92. 92.
    Man Y, Lv X, Iqbal J, Jia F, Xiao P, Hasan M, Li Q, Dai R, Geng L, Qing H, Deng Y (2013) Adsorptive BSA coating method for CE to separate basic proteins. Chromatographia 76:59–65.  https://doi.org/10.1007/s10337-012-2337-yCrossRefGoogle Scholar
  93. 93.
    Boulos SP, Davis TA, Yang JA, Lohse SE, Alkilany AM, Holland LA, Murphy CJ (2013) Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir 29:14984–14996.  https://doi.org/10.1021/la402920fCrossRefGoogle Scholar
  94. 94.
    Gao J, Huang X, Liu H, Zan F, Ren J (2012) Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir 28:4464–4471.  https://doi.org/10.1021/la204289kCrossRefGoogle Scholar
  95. 95.
    López-Lorente ÁI, Soriano ML, Valcárcel M (2014) Analysis of citrate-capped gold and silver nanoparticles by thiol ligand exchange capillary electrophoresis. Microchim Acta 181:1789–1796.  https://doi.org/10.1007/s00604-014-1218-5CrossRefGoogle Scholar
  96. 96.
    Pakiari AH, Jamshidi Z (2010) Nature and strength of M-S bonds (M = Au, Ag, and Cu) in binary alloy gold clusters. J Phys Chem A 114:9212–9221CrossRefGoogle Scholar
  97. 97.
    Gautier J, Munnier E, Soucé M, Chourpa I, Douziech Eyrolles L (2015) Analysis of doxorubicin distribution in MCF-7 cells treated with drug-loaded nanoparticles by combination of two fluorescence-based techniques, confocal spectral imaging and capillary electrophoresis. Anal Bioanal Chem 407:3425–3435.  https://doi.org/10.1007/s00216-015-8566-9CrossRefGoogle Scholar
  98. 98.
    Blazkova I, Nguyen HV, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, Stiborova M, Eckschlager T, Kizek R, Adam V (2013) Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int J Mol Sci 14:13391–13402.  https://doi.org/10.3390/ijms140713391CrossRefGoogle Scholar
  99. 99.
    Oukacine F, Bernard S, Bobe I, Cottet H (2014) Physico-chemical characterization of polymeric micelles loaded with platinum derivatives by capillary electrophoresis and related methods. J Control Release 196:139–145.  https://doi.org/10.1016/j.jconrel.2014.09.022CrossRefGoogle Scholar
  100. 100.
    Musile G, Cenci L, Andreetto E, Ambrosi E, Tagliaro F, Bossi AM (2016) Screening of the binding properties of molecularly imprinted nanoparticles via capillary electrophoresis. Anal Bioanal Chem 408:3435–3443.  https://doi.org/10.1007/s00216-016-9418-yCrossRefGoogle Scholar
  101. 101.
    Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc A Math Phys Eng Sci 219:186–203.  https://doi.org/10.1098/rspa.1953.0139CrossRefGoogle Scholar
  102. 102.
    Ibrahim A, Meyrueix R, Pouliquen G, Chan YP, Cottet H (2013) Size and charge characterization of polymeric drug delivery systems by Taylor dispersion analysis and capillary electrophoresis. Anal Bioanal Chem 405:5369–5379.  https://doi.org/10.1007/s00216-013-6972-4CrossRefGoogle Scholar
  103. 103.
    Franzen U, Østergaard J (2012) Physico-chemical characterization of liposomes and drug substance-liposome interactions in pharmaceutics using capillary electrophoresis and electrokinetic chromatography. J Chromatogr A 1267:32–44.  https://doi.org/10.1016/j.chroma.2012.07.018CrossRefGoogle Scholar
  104. 104.
    Nguyen TTTN, Østergaard J, Stürup S, Gammelgaard B (2013) Metallomics in drug development: characterization of a liposomal cisplatin drug formulation in human plasma by CE-ICP-MS. Anal Bioanal Chem 405:1845–1854.  https://doi.org/10.1007/s00216-012-6355-2CrossRefGoogle Scholar
  105. 105.
    Nguyen TTTN, Østergaard J, Stürup S, Gammelgaard B (2013) Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS. Int J Pharm 449:95–102.  https://doi.org/10.1016/j.ijpharm.2013.03.055CrossRefGoogle Scholar
  106. 106.
    Otarola J, Lista AG, Fernández Band B, Garrido M (2015) Capillary electrophoresis to determine entrapment efficiency of a nanostructured lipid carrier loaded with piroxicam. J Pharm Anal 5:70–73.  https://doi.org/10.1016/j.jpha.2014.05.003CrossRefGoogle Scholar
  107. 107.
    Janu L, Stanisavljevic M, Krizkova S, Sobrova P, Vaculovicova M, Kizek R, Adam V (2013) Electrophoretic study of peptide-mediated quantum dot-human immunoglobulin bioconjugation. Electrophoresis 34:2725–2732.  https://doi.org/10.1002/elps.201300088CrossRefGoogle Scholar
  108. 108.
    Zhou ZM, Feng Z, Zhou J, Fang BY, Ma ZY, Liu B, Zhao YD, Hu XB (2015) Quantum dot-modified aptamer probe for chemiluminescence detection of carcino-embryonic antigen using capillary electrophoresis. Sensors Actuators B Chem 210:158–164.  https://doi.org/10.1016/j.snb.2014.12.087CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California-RiversideRiversideUSA
  2. 2.Environmental Toxicology Graduate ProgramUniversity of California-RiversideRiversideUSA

Personalised recommendations