Advertisement

Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells

  • Zonghao Liu
  • Hongshan HeEmail author
Chapter

Abstract

Perovskite solar cells (PSCs) are arising as strong candidates for the next generation of thin-film photovoltaic techniques due to their high efficiency, low-cost, and simple manufacture process. A PSC usually is consisted of several components including in conductive bottom substrate, electron or hole transport layer, perovskite layer, and a counter electrode. However, PSCs are facing issues such as inaccurate evaluation of power conversion efficiency due to hysteresis, poor long-term stability, an inability for continuous manufacturing large area cells, and the use of noble metal as counter electrodes. In fact, a counter electrode is one of the key factors that govern the charge collection, long-term stability, and total cost of PSCs. Despite its importance, less attention has been paid to the exploration of counter electrode materials for PSCs. Here, we provided a summary of the recent development of counter electrode for PSCs, including metal thin-film electrode, super-thin metal thin-film electrode, nanostructured metal electrode, graphene electrode, carbon nanotube electrode, carbon black/graphite electrode, conductive oxide electrode, and polymer electrode. We highlighted findings of novel counter electrode materials towards low cost and stable PSCs as well as some drawbacks with an aim to provide readers a concise overview of the field for developing new counter electrode materials.

Keywords

Perovskite solar cells Counter electrode Metal electrode Carbon electrode Conductive oxide electrode Polymer electrode 

Notes

Acknowledgments

HH thanks Department of Chemistry & Biochemistry, Eastern Illinois University, for the support of this work. ZL thanks Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology for the support of this work.

References

  1. 1.
    Y.-B. Cheng, A. Pascoe, F. Huang, Y. Peng, Print flexible solar cells. Nature 539, 488–489 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  3. 3.
    H.-S. Kim et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  4. 4.
    J.H. Heo et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013)CrossRefGoogle Scholar
  5. 5.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Xing et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)CrossRefGoogle Scholar
  7. 7.
    S.D. Stranks et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395–398 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Etgar et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)Google Scholar
  10. 10.
    W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013)CrossRefGoogle Scholar
  11. 11.
    Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  13. 13.
    Q. Chen et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014)CrossRefGoogle Scholar
  14. 14.
    N.J. Jeon et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)CrossRefGoogle Scholar
  15. 15.
    N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016)CrossRefGoogle Scholar
  16. 16.
    A.B.. Djurišić et al., Perovskite solar cells – an overview of critical issues. Prog. Quantum Electron. 53, 1–37 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Leijtens et al., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Leo, Perovskite photovoltaics: signs of stability. Nat. Nano 10, 574–575 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Zhao, N.-G. Park, Stability issues on perovskite solar cells. Photo-Dermatology 2, 1139 (2015)Google Scholar
  21. 21.
    N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 6, 1501420 (2015)CrossRefGoogle Scholar
  22. 22.
    T.A. Berhe et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Docampo, T. Bein, A long-term view on perovskite optoelectronics. Acc. Chem. Res. 49, 339–346 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Shahbazi, H. Wang, Progress in research on the stability of organometal perovskite solar cells. Sol. Energy 123, 74–87 (2016)CrossRefGoogle Scholar
  25. 25.
    D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016)CrossRefGoogle Scholar
  26. 26.
    Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: a perspective on the substitution of the a cation and X anion. Angew. Chem. Int. Ed. 56, 1190–1212 (2016)CrossRefGoogle Scholar
  27. 27.
    M.I. Asghar, J. Zhang, H. Wang, P.D. Lund, Device stability of perovskite solar cells – a review. Renew. Sust. Energ. Rev. 77, 131–146 (2017)CrossRefGoogle Scholar
  28. 28.
    G. Niu et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)CrossRefGoogle Scholar
  29. 29.
    G. Grancini et al., CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment. Chem. Sci. 6, 7305–7310 (2015)CrossRefGoogle Scholar
  30. 30.
    C. Müller et al., Water infiltration in methylammonium lead iodide perovskite: Fast and inconspicuous. Chem. Mater. 27, 7835–7841 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Zhu et al., Interaction of organic cation with water molecule in perovskite MAPbI3: from dynamic orientational disorder to hydrogen bonding. Chem. Mater. 28, 7385–7393 (2016)CrossRefGoogle Scholar
  32. 32.
    E. Mosconi, J.M. Azpiroz, F. De Angelis, Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015)CrossRefGoogle Scholar
  33. 33.
    N. Aristidou et al., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Bryant et al., Light, and oxygen-induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Rong, L. Liu, A. Mei, X. Li, H. Han, Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv. Energy Mater. 5, 1501066 (2015)CrossRefGoogle Scholar
  36. 36.
    E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 9, 3406–3410 (2016)CrossRefGoogle Scholar
  37. 37.
    E. Tenuta, C. Zheng, O. Rubel, Thermodynamic origin of instability in hybrid halide perovskites. Sci. Rep. 6, 37654 (2016)CrossRefGoogle Scholar
  38. 38.
    G. Divitini et al., In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012 (2016)CrossRefGoogle Scholar
  39. 39.
    R.K. Misra et al., Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 6, 326–330 (2015)CrossRefGoogle Scholar
  40. 40.
    T. Leijtens et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructure organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013)CrossRefGoogle Scholar
  41. 41.
    H.J. Snaith et al., Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRefGoogle Scholar
  42. 42.
    B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J–V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 7, 905–917 (2016)CrossRefGoogle Scholar
  43. 43.
    N.K. Elumalai, A. Uddin, Hysteresis in organic-inorganic hybrid perovskite solar cells. Sol. Energy Mater. Sol. Cells 157, 476–509 (2016)CrossRefGoogle Scholar
  44. 44.
    J.M. Frost, K.T. Butler, A. Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Wei et al., Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett. 5, 3937–3945 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016)CrossRefGoogle Scholar
  47. 47.
    S. Chen et al., Mobile ion induced slow carrier dynamics in organic-inorganic perovskite CH3NH3PbBr3. ACS Appl. Mater. Interfaces 8, 5351–5357 (2016)CrossRefGoogle Scholar
  48. 48.
    P. Calado et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016)CrossRefGoogle Scholar
  49. 49.
    X. Xu, M. Wang, Photocurrent hysteresis related to ion motion in metal- organic perovskites. Sci. China Chem., 60, 1–9 (2016)CrossRefGoogle Scholar
  50. 50.
    G. Richardson et al., Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy Environ. Sci. 9, 1476–1485 (2016)CrossRefGoogle Scholar
  51. 51.
    D.A. Egger, L. Kronik, A.M. Rappe, Theory of hydrogen migration in organic-inorganic halide perovskites. Angew. Chem. Int. Ed. 54, 12437–12441 (2015)CrossRefGoogle Scholar
  52. 52.
    M. De Bastiani et al., Ion migration and the role of preconditioning cycles in the stabilization of the J–V characteristics of inverted hybrid perovskite solar cells. Adv. Energy Mater. 6, 1501453 (2016)CrossRefGoogle Scholar
  53. 53.
    H.-S. Kim, N.-G. Park, Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5, 2927–2934 (2014)CrossRefGoogle Scholar
  54. 54.
    H.-S. Kim et al., Control of I–V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6, 4633–4639 (2015)CrossRefGoogle Scholar
  55. 55.
    Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014)Google Scholar
  56. 56.
    J. Xu et al., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015)CrossRefGoogle Scholar
  57. 57.
    K. Wojciechowski et al., Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014)CrossRefGoogle Scholar
  58. 58.
    A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016)CrossRefGoogle Scholar
  59. 59.
    S.T. Williams, A. Rajagopal, C.-C. Chueh, A.K.Y. Jen, Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. J. Phys. Chem. Lett. 7, 811–819 (2016)CrossRefGoogle Scholar
  60. 60.
    H. Hu, B. Dong, W. Zhang, Low-toxic metal halide perovskites: opportunities and future challenges. J. Mater. Chem. A 5, 11436–11449 (2017)CrossRefGoogle Scholar
  61. 61.
    M. Lyu, J.-H. Yun, P. Chen, M. Hao, L. Wang, Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 7, 1602512 (2017)CrossRefGoogle Scholar
  62. 62.
    Y. Deng, Q. Dong, C. Bi, Y. Yuan, J. Huang, Air-stable, efficient mixed-cation perovskite solar cells with cu electrode by scalable fabrication of active layer. Adv. Energy Mater. 6, 1600372 (2016)CrossRefGoogle Scholar
  63. 63.
    J.H. Kim, S.T. Williams, N. Cho, C.-C. Chueh, A.K.Y. Jen, Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 1401229 (2015)CrossRefGoogle Scholar
  64. 64.
    J. Lee et al., A printable organic electron transport layer for low-temperature-processed, hysteresis-free, and stable planar perovskite solar cells. Adv. Energy Mater. 7, 1700226 (2017)CrossRefGoogle Scholar
  65. 65.
    Z. Yang et al., High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5, 1500328 (2015)CrossRefGoogle Scholar
  66. 66.
    A.T. Mallajosyula et al., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Appl. Mater. Today 3, 96–102 (2016)CrossRefGoogle Scholar
  67. 67.
    Y. Deng et al., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 8, 1544–1550 (2015)CrossRefGoogle Scholar
  68. 68.
    S. Razza et al., Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J. Power Sources 277, 286–291 (2015)CrossRefGoogle Scholar
  69. 69.
    M. Yang et al., Perovskite ink with a wide processing window for scalable high- efficiency solar cells. Nat. Energy 2, 17038 (2017)CrossRefGoogle Scholar
  70. 70.
    S. Li et al., High-performance formamidinium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition. Org. Electron. 47, 102–107 (2017).78CrossRefGoogle Scholar
  71. 71.
    H. Wu et al., Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition. Org. Electron. 45, 302–307 (2017)CrossRefGoogle Scholar
  72. 72.
    H. Back et al., Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Sol. Energy Mater. Sol. Cells 144, 309–315 (2016)CrossRefGoogle Scholar
  73. 73.
    M. Bag et al., Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Mater. Lett. 164, 472–475 (2016)CrossRefGoogle Scholar
  74. 74.
    H. Huang et al., Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016)CrossRefGoogle Scholar
  75. 75.
    W.-C. Chang, D.-H. Lan, K.-M. Lee, X.-F. Wang, C.-L. Liu, Controlled deposition and performance optimization of perovskite solar cells using ultrasonic spray-coating of photoactive layers. ChemSusChem 10, 1405–1412 (2017)CrossRefGoogle Scholar
  76. 76.
    M. Remeika, S.R. Raga, S. Zhang, Y. Qi, Transferrable optimization of spray-coated PbI2 films for perovskite solar cell fabrication. J. Mater. Chem. A 5, 5709–5718 (2017)CrossRefGoogle Scholar
  77. 77.
    Z. Wei, H. Chen, K. Yan, S. Yang, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/Nanocarbon electrode and Interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 13239–13243 (2014)CrossRefGoogle Scholar
  78. 78.
    S.G. Hashmi et al., Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. J. Mater. Chem. A 5, 4797–4802 (2017)CrossRefGoogle Scholar
  79. 79.
    S.-G. Li et al., Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 3, 9092–9097 (2015)CrossRefGoogle Scholar
  80. 80.
    F. Mathies et al., Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. J. Mater. Chem. A 4, 19207–19213 (2016)CrossRefGoogle Scholar
  81. 81.
    T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed Back electrodes. Adv. Energy Mater. 5, 1500569 (2015)CrossRefGoogle Scholar
  82. 82.
    D. Vak et al., 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells. Adv. Energy Mater. 5, 1401539 (2015)CrossRefGoogle Scholar
  83. 83.
    T. Qin et al., Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31, 210–217 (2017)CrossRefGoogle Scholar
  84. 84.
    J. Ciro, M.A. Mejía-Escobar, F. Jaramillo, Slot-die processing of flexible perovskite solar cells in ambient conditions. Sol. Energy 150, 570–576 (2017)CrossRefGoogle Scholar
  85. 85.
    G. Cotella et al., One-step deposition by a slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 159, 362–369 (2017)CrossRefGoogle Scholar
  86. 86.
    A.T. Barrows et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014)CrossRefGoogle Scholar
  87. 87.
    S. Das et al., High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon. 2, 680–686 (2015)CrossRefGoogle Scholar
  88. 88.
    M.-C. Kim et al., Electro-spray deposition of a mesoporous TiO2 charge collection layer: toward large scale and continuous production of high-efficiency perovskite solar cells. Nanoscale 7, 20725–20733 (2015)CrossRefGoogle Scholar
  89. 89.
    Z. Liang et al., A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 5, 60562–60569 (2015)CrossRefGoogle Scholar
  90. 90.
    J.H. Heo, M.H. Lee, M.H. Jang, S.H. Im, Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642 (2016)CrossRefGoogle Scholar
  91. 91.
    Y.-S. Jung et al., Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells. Sci. Rep. 6, 20357 (2016)CrossRefGoogle Scholar
  92. 92.
    D.K. Mohamad, J. Griffin, C. Bracher, A.T. Barrows, D.G. Lidzey, Spray- cast multilayer organometal perovskite solar cells fabricated in air. Adv. Energy Mater. 6, 1600994 (2016)CrossRefGoogle Scholar
  93. 93.
    Z. Bi et al., Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells. Sol. Energy Mater. Sol. Cells 162, 13–12 (2017)CrossRefGoogle Scholar
  94. 94.
    S.C. Hong et al., Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system. ACS Appl. Mater. Interfaces 9, 7879–7884 (2017)CrossRefGoogle Scholar
  95. 95.
    S. Kavadiya, D.M. Niedzwiedzki, S. Huang, P. Biswas, Electrospray- assisted fabrication of moisture-resistant and highly stable perovskite solar cells at ambient conditions. Adv. Energy Mater., 7, 1700210 (2017)CrossRefGoogle Scholar
  96. 96.
    Z. Gu et al., Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 3, 24254–24260 (2015)CrossRefGoogle Scholar
  97. 97.
    K. Hwang et al., Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015)CrossRefGoogle Scholar
  98. 98.
    Q. Hu et al., Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 8, 5350–5535 (2016)CrossRefGoogle Scholar
  99. 99.
    L.H. Rossander et al., In situ X-ray scattering of perovskite solar cell, active layers roll-to-roll coated on flexible substrates. CrystEngComm 18, 5083–5088 (2016)CrossRefGoogle Scholar
  100. 100.
    W.S. Yang et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)CrossRefGoogle Scholar
  101. 101.
    N. Ahn et al., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015)CrossRefGoogle Scholar
  102. 102.
    D.-Y. Son et al., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016)CrossRefGoogle Scholar
  103. 103.
    Y. Wu et al., Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016)CrossRefGoogle Scholar
  104. 104.
    W. Chen et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015)CrossRefGoogle Scholar
  105. 105.
    Y. Wu et al., Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater., 29, 1701073 (2017)Google Scholar
  106. 106.
    J.-Y. Jeng et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)CrossRefGoogle Scholar
  107. 107.
    L. Meng, J. Yu, T.-F. Guo, Y. Yang, Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155–165 (2015)CrossRefGoogle Scholar
  108. 108.
    Y. Shao, Y. Yuan, J. Huang, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016)CrossRefGoogle Scholar
  109. 109.
    Y. Kato et al., Silver iodide formation in methyl ammonium Lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015)CrossRefGoogle Scholar
  110. 110.
    M. Kaltenbrunner et al., Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015)CrossRefGoogle Scholar
  111. 111.
    J. Zhao et al., Are Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9, 3650–3656 (2016)CrossRefGoogle Scholar
  112. 112.
    X. Zheng et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017)CrossRefGoogle Scholar
  113. 113.
    Y. Shao, Q. Wang, Q. Dong, Y. Yuan, J. Huang, Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells. Nano Energy 16, 47–53 (2015)CrossRefGoogle Scholar
  114. 114.
    A. Guerrero et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2015)CrossRefGoogle Scholar
  115. 115.
    Q. Jiang, X. Sheng, B. Shi, X. Feng, T. Xu, Nickel-cathode perovskite solar cells. J. Phys. Chem. C 118, 25878–25883 (2014)CrossRefGoogle Scholar
  116. 116.
    B. Abdollahi Nejand, V. Ahmadi, H.R. Shahverdi, New physical deposition approach for low-cost inorganic hole transport layer in Normal architecture of durable perovskite solar cells. ACS Appl. Mater. Interfaces 7, 21807–21818 (2015)CrossRefGoogle Scholar
  117. 117.
    Z. Ku, X. Xia, H. Shen, N.H. Tiep, H.J. Fan, A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale 7, 13363–13368 (2015)CrossRefGoogle Scholar
  118. 118.
    I. Jeong et al., Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy 17, 131–139 (2015)CrossRefGoogle Scholar
  119. 119.
    G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith, Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014)CrossRefGoogle Scholar
  120. 120.
    S. Aharon et al., Self-assembly of perovskite for fabrication of semitransparent perovskite solar cells. Adv. Mater. Interfaces 2, 1500118 (2015)CrossRefGoogle Scholar
  121. 121.
    J.W. Jung, C.-C. Chueh, A.K.Y. Jen, High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole- transporting material. Adv. Energy Mater. 5, 1500486 (2015)CrossRefGoogle Scholar
  122. 122.
    S. Bag, M.F. Durstock, Efficient semi-transparent planar perovskite solar cells using a ‘molecular glue’. Nano Energy 30, 542–548 (2016)CrossRefGoogle Scholar
  123. 123.
    Y. Liu et al., High-efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer. ACS Appl. Mater. Interfaces 8, 7070–7076 (2016)CrossRefGoogle Scholar
  124. 124.
    C. Roldan-Carmona et al., High efficiency single-junction semitransparent perovskite solar cells. Energy Environ. Sci. 7, 2968–2973 (2014)CrossRefGoogle Scholar
  125. 125.
    G.M. Kim, T. Tatsuma, Semitransparent solar cells with ultrasmooth and low-scattering perovskite thin films. J. Phys. Chem. C 120, 28933–289383 (2016)CrossRefGoogle Scholar
  126. 126.
    J.A. Pracchia, J.M. Simon, Transparent heat mirrors: influence of the materials on the optical characteristics. Appl. Opt. 20, 251–2583 (1981)CrossRefGoogle Scholar
  127. 127.
    C.G. Granqvist, Radiative heating and cooling with spectrally selective surfaces. Appl. Opt. 20, 2606–26153 (1981)CrossRefGoogle Scholar
  128. 128.
    H. Jin et al., Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 24, 2572–25773 (2012)CrossRefGoogle Scholar
  129. 129.
    W. Cao et al., Flexible organic solar cells using an oxide/metal/oxide trilayer as a transparent electrode. Org. Electron. 13, 2221–22283 (2012)CrossRefGoogle Scholar
  130. 130.
    L. Cattin, J.C. Bernède, M. Morsli, Toward indium-free optoelectronic devices: dielectric/metal/dielectric alternative transparent conductive electrode in organic photovoltaic cells. Phys. Status Solidi A 210, 1047–10613 (2013)CrossRefGoogle Scholar
  131. 131.
    N.P. Sergeant et al., Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv. Mater. 24, 728–7323 (2012)CrossRefGoogle Scholar
  132. 132.
    T. Schwab et al., Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707–7133 (2013)CrossRefGoogle Scholar
  133. 133.
    H. Cho, C. Yun, S. Yoo, Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics. Opt. Express 18, 3404–3414 (2010)CrossRefGoogle Scholar
  134. 134.
    H. Cho, J.-M. Choi, S. Yoo, Highly transparent organic light-emitting diodes with a metallic top electrode: the dual role of a Cs2CO3 layer. Opt. Express 19, 1113–1121 (2011)CrossRefGoogle Scholar
  135. 135.
    H. Cho, C. Yun, J.-W. Park, S. Yoo, Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Org. Electron. 10, 1163–1169 (2009)CrossRefGoogle Scholar
  136. 136.
    H. Moon, H. Cho, M. Kim, K. Takimiya, S. Yoo, Towards colorless transparent organic transistors: potential of Benzothieno[3,2- b]benzothiophene-based wide-gap semiconductors. Adv. Mater. 26, 3105–3110 (2014)CrossRefGoogle Scholar
  137. 137.
    E. Della Gaspera et al., Ultra-thin high-efficiency semitransparent perovskite solar cells. Nano Energy 13, 249–257 (2015)CrossRefGoogle Scholar
  138. 138.
    H. Kim, H.-S. Kim, J. Ha, N.-G. Park, S. Yoo, Empowering semi-transparent solar cells with thermal-mirror functionality. Adv. Energy Mater. 6, 1502466 (2016)CrossRefGoogle Scholar
  139. 139.
    S. Pang et al., Efficient bifacial semitransparent perovskite solar cells with silver thin film electrode. Sol. Energy Mater. Sol. Cells 170, 278–286 (2017)CrossRefGoogle Scholar
  140. 140.
    Y. Yang et al., Multilayer transparent top electrode for solution-processed perovskite/Cu(In, Ga)(Se, S)2 four terminal tandem solar cells. ACS Nano 9, 7714–7721 (2015)CrossRefGoogle Scholar
  141. 141.
    S. Schubert, J. Meiss, L. Müller-Muschamp, K. Leo, Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv. Energy Mater. 3, 438–443 (2013)CrossRefGoogle Scholar
  142. 142.
    B. Chen, X. Zheng, Y. Bai, N.P. Padture, J. Huang, Progress in tandem solar cells based on hybrid organic-inorganic perovskites. Adv. Energy Mater., 7, 1602400 (2017)CrossRefGoogle Scholar
  143. 143.
    J. Hu, Q. Cheng, R. Fan, H. Zhou, Recent development of organic-inorganic perovskite-based tandem solar cells. Solar RRL 1, 1700045 (2017)CrossRefGoogle Scholar
  144. 144.
    D. Zhao et al., Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017)CrossRefGoogle Scholar
  145. 145.
    M. Xu et al., Flexible perovskite solar cells with ultrathin Au anode and vapor- deposited perovskite film. Sol. Energy Mater. Sol. Cells 169, 8–12 (2017)CrossRefGoogle Scholar
  146. 146.
    X.-L. Ou, M. Xu, J. Feng, H.-B. Sun, Flexible and efficient ITO-free semitransparent perovskite solar cells. Sol. Energy Mater. Sol. Cells 157, 660–665 (2016)CrossRefGoogle Scholar
  147. 147.
    X.-L. Ou, J. Feng, M. Xu, H.-B. Sun, Semitransparent and flexible perovskite solar cell with high visible transmittance based on ultrathin metallic electrodes. Opt. Lett. 42, 1958–1961 (2017)CrossRefGoogle Scholar
  148. 148.
    Z. Hawash, L.K. Ono, S.R. Raga, M.V. Lee, Y. Qi, Air-exposure induced dopant redistribution and energy level shifts in spin-coated Spiro-MeOTAD films. Chem. Mater. 27, 562–569 (2015)CrossRefGoogle Scholar
  149. 149.
    K. Domanski et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016)CrossRefGoogle Scholar
  150. 150.
    S. Cacovich et al., Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale 9, 4700–4706 (2017)CrossRefGoogle Scholar
  151. 151.
    D. Wei et al., Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface. J. Mater. Chem. A 4, 1991–1998 (2016)CrossRefGoogle Scholar
  152. 152.
    Y. Han et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015)CrossRefGoogle Scholar
  153. 153.
    J. Li, Q. Dong, N. Li, L. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7, 1602922 (2017)CrossRefGoogle Scholar
  154. 154.
    L. Zhao et al., Redox chemistry dominate the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595–602 (2016)CrossRefGoogle Scholar
  155. 155.
    J. You et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nano 11, 75–78 (2016)CrossRefGoogle Scholar
  156. 156.
    E.M. Sanehira et al., Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38–45 (2016)CrossRefGoogle Scholar
  157. 157.
    C. Li, S. Pang, H. Xu, G. Cui, Methylamine gas based synthesis and healing process toward upscaling of perovskite solar cells: progress and perspective. Solar RRL 1, 1700076 (2017)CrossRefGoogle Scholar
  158. 158.
    C.-Y. Chang et al., Enhanced performance and stability of semitransparent perovskite solar cells using solution-processed thiol-functionalized cationic surfactant as cathode buffer layer. Chem. Mater. 27, 7119–7127 (2015)CrossRefGoogle Scholar
  159. 159.
    H. Back et al., Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 9, 1258–1263 (2016)CrossRefGoogle Scholar
  160. 160.
    H. Chen, S. Yang, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv. Mater., 29, 1603994 (2017)CrossRefGoogle Scholar
  161. 161.
    Z. Jiang et al., Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energy Mater. Sol. Cells 146, 35–43 (2016)CrossRefGoogle Scholar
  162. 162.
    Y. Luo et al., AgAl alloy electrode for efficient perovskite solar cells. RSC Adv. 5, 56037–56044 (2015)CrossRefGoogle Scholar
  163. 163.
    S. Ye, A.R. Rathmell, Z. Chen, I.E. Stewart, B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors. Adv. Mater. 26, 6670–6687 (2014)CrossRefGoogle Scholar
  164. 164.
    T. Sannicolo et al., Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016)CrossRefGoogle Scholar
  165. 165.
    C.F. Guo, Z. Ren, Flexible transparent conductors based on metal nanowire networks. Mater. Today 18, 143–154 (2015)CrossRefGoogle Scholar
  166. 166.
    H. Lee, I. Kim, M. Kim, H. Lee, Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes. Nanoscale 8, 1789–1822 (2016)CrossRefGoogle Scholar
  167. 167.
    L. Hu, H. Wu, Y. Cui, Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011)CrossRefGoogle Scholar
  168. 168.
    J. Ahn, H. Hwang, S. Jeong, J. Moon, Metal-nanowire-electrode-based perovskite solar cells: challenging issues and new opportunities. Adv. Energy Mater., 7, 1602751 (2017)CrossRefGoogle Scholar
  169. 169.
    F. Guo et al., High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7, 1642–1649 (2015)CrossRefGoogle Scholar
  170. 170.
    C.O. Ramirez Quiroz et al., Pushing efficiency limits for semitransparent perovskite solar cells. J. Mater. Chem. A 3, 24071–24081 (2015)CrossRefGoogle Scholar
  171. 171.
    C.O. Ramírez Quiroz et al., Coloring semitransparent perovskite solar cells via dielectric mirrors. ACS Nano 10, 5104–5112 (2016)CrossRefGoogle Scholar
  172. 172.
    H. Hwang et al., Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes. Adv. Funct. Mater. 26, 6545–6554 (2016)CrossRefGoogle Scholar
  173. 173.
    M. Lee, Y. Ko, B.K. Min, Y. Jun, Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. ChemSusChem 9, 31–35 (2016)CrossRefGoogle Scholar
  174. 174.
    R. Li, X. Xiang, X. Tong, J. Zou, Q. Li, Wearable double-twisted fibrous perovskite solar cell. Adv. Mater. 27, 3831–3835 (2015)CrossRefGoogle Scholar
  175. 175.
    J.H. Park et al., Flexible and transparent metallic grid electrodes prepared by evaporative assembly. ACS Appl. Mater. Interfaces 6, 12380–12387 (2014)CrossRefGoogle Scholar
  176. 176.
    Y. Li et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016)CrossRefGoogle Scholar
  177. 177.
    D. Bryant et al., A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells. Adv. Mater. 26, 7499–7504 (2014)CrossRefGoogle Scholar
  178. 178.
    M. Makha et al., A transparent, solvent-free laminated top electrode for perovskite solar cells. Sci. Technol. Adv. Mater. 17, 260–266 (2016)CrossRefGoogle Scholar
  179. 179.
    G.E. Eperon et al., Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite. J. Phys. Chem. Lett. 6, 129–138 (2015)CrossRefGoogle Scholar
  180. 180.
    M.T. Hörantner et al., Shunt-blocking layers for semitransparent perovskite solar cells. Adv. Mater. Interfaces 3, 1500837 (2016)CrossRefGoogle Scholar
  181. 181.
    R. Venkata Krishna Rao, K. Venkata Abhinav, P.S. Karthik, S.P. Singh, Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5, 77760–77790 (2015)CrossRefGoogle Scholar
  182. 182.
    X. Dai et al., Working from both sides: composite metallic semitransparent top electrode for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 8, 4523–4531 (2016)CrossRefGoogle Scholar
  183. 183.
    E.C. Garnett et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012)CrossRefGoogle Scholar
  184. 184.
    K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  185. 185.
    K. Rana, J. Singh, J.-H. Ahn, A graphene-based transparent electrode for use in flexible optoelectronic devices. J. Mater. Chem. C 2, 2646–2656 (2014)CrossRefGoogle Scholar
  186. 186.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)CrossRefGoogle Scholar
  187. 187.
    J. Wu et al., Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2010)CrossRefGoogle Scholar
  188. 188.
    P. Hyesung, A.R. Jill, K. Ki Kang, B. Vladimir, K. Jing, Doped graphene electrodes for organic solar cells. Nanotechnology 21, 505204 (2010)CrossRefGoogle Scholar
  189. 189.
    H. Park et al., Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett. 14, 5148–5154 (2014)CrossRefGoogle Scholar
  190. 190.
    J. Wu et al., Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008)CrossRefGoogle Scholar
  191. 191.
    P. You, Z. Liu, Q. Tai, S. Liu, F. Yan, Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27, 3632–3638 (2015)CrossRefGoogle Scholar
  192. 192.
    F. Lang et al., Perovskite solar cells with large-area CVD-graphene for tandem solar cells. J. Phys. Chem. Lett. 6, 2745–2750 (2015)CrossRefGoogle Scholar
  193. 193.
    H. Sung et al., Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6, 1501873 (2016)CrossRefGoogle Scholar
  194. 194.
    J. Yoon et al., Super flexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)CrossRefGoogle Scholar
  195. 195.
    Z. Liu, P. Yu, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016)CrossRefGoogle Scholar
  196. 196.
    E. López-Naranjo et al., Transparent electrodes: a review of the use of carbon-based nanomaterials. J. Nanomater. 2016, 12 (2016)CrossRefGoogle Scholar
  197. 197.
    M. Batmunkh, C.J. Shearer, M.J. Biggs, J.G. Shapter, Solution processed graphene structures for perovskite solar cells. J. Mater. Chem. A 4, 2605–2616 (2016)CrossRefGoogle Scholar
  198. 198.
    Y. Song, W. Fang, R. Brenes, J. Kong, Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today 10, 681–700 (2015)CrossRefGoogle Scholar
  199. 199.
    K. Yan et al., High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small 11, 2269–2274 (2015)CrossRefGoogle Scholar
  200. 200.
    S.N. Habisreutinger, R.J. Nicholas, H.J. Snaith, Carbon nanotubes in perovskite solar cells. Adv. Energy Mater. 7, 1601839 (2017)CrossRefGoogle Scholar
  201. 201.
    S.N. Habisreutinger et al., Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014)CrossRefGoogle Scholar
  202. 202.
    Z. Li et al., Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797–6804 (2014)CrossRefGoogle Scholar
  203. 203.
    Z. Wei, H. Chen, K. Yan, X. Zheng, S. Yang, Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J. Mater. Chem. A 3, 24226–24231 (2015)CrossRefGoogle Scholar
  204. 204.
    L. Qiu et al., An all-solid-state fiber-type solar cell achieving 9.49% efficiency. J. Mater. Chem. A 4, 10105–10109 (2016)CrossRefGoogle Scholar
  205. 205.
    Q. Luo et al., Cross-stacked super-aligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J. Mater. Chem. A 4, 5569–5577 (2016)CrossRefGoogle Scholar
  206. 206.
    X. Wang et al., TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015)CrossRefGoogle Scholar
  207. 207.
    X. Zheng et al., High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Front. Optoelectron. 9, 71–80 (2016)CrossRefGoogle Scholar
  208. 208.
    X. Zheng et al., Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett. 17, 2496–2505 (2017)CrossRefGoogle Scholar
  209. 209.
    C.V.V.M. Gopi, M. Venkata-Haritha, K. Prabhakar, H.-J. Kim, Low- temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells. J. Photochem. Photobiol. A Chem. 332, 265–272 (2017)CrossRefGoogle Scholar
  210. 210.
    L. Qiu, J. Deng, X. Lu, Z. Yang, H. Peng, Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53, 10425–10428 (2014)CrossRefGoogle Scholar
  211. 211.
    L. Qiu, S. He, J. Yang, J. Deng, H. Peng, Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 12, 2419–2424 (2016)CrossRefGoogle Scholar
  212. 212.
    S. He et al., Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. J. Mater. Chem. A 3, 9406–9410 (2015)CrossRefGoogle Scholar
  213. 213.
    A. Kay, M. Grätzel, Low-cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44, 99–117 (1996)CrossRefGoogle Scholar
  214. 214.
    G. Liu et al., A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochim. Acta 69, 334–339 (2012)CrossRefGoogle Scholar
  215. 215.
    M. Xu et al., Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. J. Mater. Chem. A 2, 8607–8611 (2014)CrossRefGoogle Scholar
  216. 216.
    L. Zhang et al., The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. J. Mater. Chem. A 3, 9165–9170 (2015)CrossRefGoogle Scholar
  217. 217.
    M. Duan et al., Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite. Carbon 120, 71–76 (2017)CrossRefGoogle Scholar
  218. 218.
    H. Li et al., 14.7% efficient mesoscopic perovskite solar cells using single-walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 8, 6379–6385 (2016)CrossRefGoogle Scholar
  219. 219.
    L. Xu et al., Stable monolithic hole-conductor-free perovskite solar cells using TiO2 nanoparticle binding carbon films. Org. Electron. 45, 131–138 (2017)CrossRefGoogle Scholar
  220. 220.
    Y. Rong et al., Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes. J. Phys. Chem. Lett. 5, 2160–2164 (2014)CrossRefGoogle Scholar
  221. 221.
    T. Liu et al., Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell. J. Power Sources 293, 533–538 (2015)CrossRefGoogle Scholar
  222. 222.
    Y. Yang et al., The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. J. Mater. Chem. A 3, 9103–9107 (2015)CrossRefGoogle Scholar
  223. 223.
    X. Xu et al., Lead Methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation. ChemSusChem 7, 3088–3309 (2014)CrossRefGoogle Scholar
  224. 224.
    K. Cao et al., MAPbI3−xBrx mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis. Nanoscale 8, 8839–8846 (2016)CrossRefGoogle Scholar
  225. 225.
    T. Liu et al., Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells. RSC Adv. 7, 10118–10123 (2017)CrossRefGoogle Scholar
  226. 226.
    L. Liu et al., Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015)CrossRefGoogle Scholar
  227. 227.
    J. Chen et al., Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy 27, 130–137 (2016)CrossRefGoogle Scholar
  228. 228.
    C.-Y. Chan, Y. Wang, G.-W. Wu, E. Wei-Guang Diau, Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. J. Mater. Chem. A 4, 3872–3878 (2016)CrossRefGoogle Scholar
  229. 229.
    J. Chen et al., Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3−x)(BF4)x. Adv. Energy Mater. 6, 1502009 (2015)CrossRefGoogle Scholar
  230. 230.
    H. Zhang et al., SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells. Adv. Mater. 29, 1606608 (2017)CrossRefGoogle Scholar
  231. 231.
    Y. Rong et al., Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 8, 14555 (2017)CrossRefGoogle Scholar
  232. 232.
    M. Hu et al., Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3. J. Mater. Chem. A 2, 17115–17121 (2014)CrossRefGoogle Scholar
  233. 233.
    K. Cao et al., Efficient mesoscopic perovskite solar cells based on the CH3NH3PbI2Br light absorber. J. Mater. Chem. A 3, 9116–9122 (2015)CrossRefGoogle Scholar
  234. 234.
    A. Mei et al., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014)CrossRefGoogle Scholar
  235. 235.
    X. Li et al., Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energ. Technol. 3, 551–555 (2015)CrossRefGoogle Scholar
  236. 236.
    S.G. Hashmi et al., Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility. Adv. Mater. Technol. 2, 1600183 (2017)CrossRefGoogle Scholar
  237. 237.
    Y. Hu et al., Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL 1, 1600019 (2017)CrossRefGoogle Scholar
  238. 238.
    A. Priyadarshi et al., A large area (70 cm2) monolithic perovskite solar module with high efficiency and stability. Energy Environ. Sci. 9, 3687–3692 (2016)CrossRefGoogle Scholar
  239. 239.
    Z. Liu et al., p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967–3973 (2015)CrossRefGoogle Scholar
  240. 240.
    X. Xu et al., Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402–2408 (2015)CrossRefGoogle Scholar
  241. 241.
    Z. Liu et al., NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. J. Mater. Chem. A 3, 24121–24127 (2015)CrossRefGoogle Scholar
  242. 242.
    F. Zhang et al., Structure engineering of hole–conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces 6, 16140–16146 (2014)CrossRefGoogle Scholar
  243. 243.
    H. Zhou et al., Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 3241–3246 (2014)CrossRefGoogle Scholar
  244. 244.
    Z. Wei et al., Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 7, 3326–3333 (2014)CrossRefGoogle Scholar
  245. 245.
    Y. Yang et al., An all-carbon counter electrode for highly efficient hole- conductor-free organo-metal perovskite solar cells. RSC Adv. 4, 52825–52830 (2014)CrossRefGoogle Scholar
  246. 246.
    Z. Wei et al., A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. J. Mater. Chem. A 3, 16430–16434 (2015)CrossRefGoogle Scholar
  247. 247.
    G. Yue et al., Low-temperature prepared carbon electrodes for hole-conductor- free mesoscopic perovskite solar cells. Electrochim. Acta 218, 84–90 (2016)CrossRefGoogle Scholar
  248. 248.
    Z. Liu, T. Shi, Z. Tang, B. Sun, G. Liao, Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. Nanoscale 8, 7017–7702 (2016)CrossRefGoogle Scholar
  249. 249.
    M. Chen et al., Boron and phosphorus co-doped carbon counter electrode for efficient hole-conductor-free perovskite solar cell. Chem. Eng. J. 313, 791–800 (2017)CrossRefGoogle Scholar
  250. 250.
    N. Cheng et al., Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J. Power Sources 332, 24–29 (2016)CrossRefGoogle Scholar
  251. 251.
    Z. Yu et al., Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv. Funct. Mater. 26, 4866–4873 (2016)CrossRefGoogle Scholar
  252. 252.
    H. Wei et al., Free-standing flexible carbon electrode for a highly efficient hole- conductor-free perovskite solar cells. Carbon 93, 861–868 (2015)CrossRefGoogle Scholar
  253. 253.
    S. Gholipour et al., Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth. Adv. Energy Mater. 6, 1601116 (2016)CrossRefGoogle Scholar
  254. 254.
    X. Zheng et al., Designing nano bowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale 8, 6393–6402 (2016)CrossRefGoogle Scholar
  255. 255.
    X. Zheng et al., In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. J. Energy Chem. 24, 736–743 (2015)CrossRefGoogle Scholar
  256. 256.
    H. Hu et al., Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air. ACS Appl. Mater. Interfaces 8, 17999–18007 (2016)CrossRefGoogle Scholar
  257. 257.
    Y. Xiao et al., W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J. Power Sources 342, 489–494 (2017)CrossRefGoogle Scholar
  258. 258.
    Z. Yu et al., A composite nanostructured electron-transport layer for stable hole- conductor free perovskite solar cells: design and characterization. Nanoscale 8, 5847–5851 (2016)CrossRefGoogle Scholar
  259. 259.
    H. Chen et al., An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. J. Mater. Chem. A 4, 12897–12912 (2016)CrossRefGoogle Scholar
  260. 260.
    H. Chen et al., Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6, 1502087 (2016)CrossRefGoogle Scholar
  261. 261.
    X. Chang et al., Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells. ACS Appl. Mater. Interfaces 8, 30184–30192 (2016)CrossRefGoogle Scholar
  262. 262.
    N. Cheng et al., Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment. J. Power Sources 319, 111–115 (2016)CrossRefGoogle Scholar
  263. 263.
    C. Zhang et al., Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8, 347–357 (2016)CrossRefGoogle Scholar
  264. 264.
    S. Bai et al., Cubic: column composite structure (NH2CH=NH2)x(CH3NH3)1−xPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability. Electrochim. Acta 190, 775–779 (2016)CrossRefGoogle Scholar
  265. 265.
    X. Chang et al., Carbon-based CsPbBr3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Appl. Mater. Interfaces 8, 33649–33655 (2016)CrossRefGoogle Scholar
  266. 266.
    J. Liang et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016)CrossRefGoogle Scholar
  267. 267.
    F. Zhang et al., Engineering of hole-selective contact for low temperature- processed carbon counter electrode-based perovskite solar cells. J. Mater. Chem. A 3, 24272–24280 (2015)CrossRefGoogle Scholar
  268. 268.
    X. Jiang et al., Interfacial engineering of perovskite solar cells by employing a hydrophobic copper phthalocyanine derivative as hole-transporting material with improved performance and stability. ChemSusChem 10, 1838–1845 (2017)CrossRefGoogle Scholar
  269. 269.
    F. Zhang, X. Yang, M. Cheng, W. Wang, L. Sun, Boosting the efficiency and the stability of low-cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as the counter electrode. Nano Energy 20, 108–116 (2016)CrossRefGoogle Scholar
  270. 270.
    S. Liu et al., Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Sol. Energy 144, 158–165 (2017)CrossRefGoogle Scholar
  271. 271.
    Z. Liu et al., Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells. Adv. Mater. 29, 1606774 (2017)CrossRefGoogle Scholar
  272. 272.
    P. Loper et al., Organic-inorganic halide perovskite/crystalline silicon four- terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2015)CrossRefGoogle Scholar
  273. 273.
    K.A. Bush et al., Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016)CrossRefGoogle Scholar
  274. 274.
    T. Duong et al., Semitransparent perovskite solar cell with sputtered front and rear electrodes for a four-terminal tandem. IEEE J. Photovoltaics 6, 679–687 (2016)CrossRefGoogle Scholar
  275. 275.
    J. Werner et al., Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015)CrossRefGoogle Scholar
  276. 276.
    L. Kranz et al., High-efficiency polycrystalline thin-film tandem solar cells. J. Phys. Chem. Lett. 6, 2676–2681 (2015)CrossRefGoogle Scholar
  277. 277.
    D.P. McMeekin et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016)CrossRefGoogle Scholar
  278. 278.
    Z. Yang et al., Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv. Mater. 28, 8990–8997 (2016)CrossRefGoogle Scholar
  279. 279.
    G.E. Eperon et al., Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science. 354, 861–865 (2016)CrossRefGoogle Scholar
  280. 280.
    F. Fu et al., Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015)CrossRefGoogle Scholar
  281. 281.
    S. Albrecht et al., Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016)CrossRefGoogle Scholar
  282. 282.
    J. Werner et al., Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016)CrossRefGoogle Scholar
  283. 283.
    J.H. Heo, S.H. Im, CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28, 5121–5125 (2015)CrossRefGoogle Scholar
  284. 284.
    K. Sun, P. Li, Y. Xia, J. Chang, J. Ouyang, Transparent conductive oxide-free perovskite solar cells with PEDOT: PSS as transparent electrode. ACS Appl. Mater. Interfaces 7, 15314–15320 (2015)CrossRefGoogle Scholar
  285. 285.
    F. Jiang et al., Metal electrode–free perovskite solar cells with the transfer- laminated conducting polymer electrode. Opt. Express 23, A83–A91 (2015)CrossRefGoogle Scholar
  286. 286.
    L. Bu et al., Semitransparent fully air processed perovskite solar cells. ACS Appl. Mater. Interfaces 7, 17776–17781 (2015)CrossRefGoogle Scholar
  287. 287.
    S. Xiao et al., Hierarchical dual-scaffolds enhance charge separation and collection for high-efficiency semitransparent perovskite solar cells. Adv. Mater. Interfaces 3, 1600484 (2016)CrossRefGoogle Scholar
  288. 288.
    Y. Xiao, G. Han, H. Zhou, J. Wu, An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode. RSC Adv. 6, 2778–2784 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanP. R. China
  2. 2.Department of Chemistry and BiochemistryEastern Illinois UniversityCharlestonUSA

Personalised recommendations