Strategies for Improving Solar Energy Conversion: Nanostructured Materials and Processing Techniques



Organic photovoltaics, the technology to convert sunlight into electricity by employing thin films of organic semiconductors, has received increased interest due to innovations in nanomaterials and processing methods. These technological improvements have the potential to advance a new generation of low-cost, solar-powered products with small form factors. Here, we review the photophysical and chemical concepts of organic photovoltaics and discuss some recent synthesis and fabrication results as well as future challenges.


Metal-organic frameworks Perovskites Layer-by-layer deposition Air-liquid interface method Langmuir-Blodgett method Solar energy conversion 



We acknowledge the release time for M.C.S from Office of Research and Sponsored Programs at California State University, Chico (CSUC), and CSU Council on Ocean Affairs, Science & Technology. We also thank the faculty members from the Faculty Learning Communities of Office of Faculty Development at CSUC for their helpful comments and suggestions on this book chapter.


  1. 1.
    N. Ahn, S.M. Kang, J.W. Lee, M. Choi, N.G. Park, Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on the photovoltaic performance of perovskite solar cells. J. Mater. Chem. A 3, 19901–19906 (2015)CrossRefGoogle Scholar
  2. 2.
    J.L. Barnett, V.L. Cherrette, C.J. Hutcherson, M.C. So, Effects of solution-based fabrication conditions on morphology of lead halide perovskite thin film solar cells. Adv. Mater. Sci. Eng. (2016). Scholar
  3. 3.
    N.P. Pellet, P. Gao, P. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Jin, H.J. Son, O.K. Farha, G.P. Wiederrecht, Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. J. Am. Chem. Soc. 135(3), 955–958 (2013)CrossRefGoogle Scholar
  5. 5.
    G. Lu, S. Li, Z. Guo, et al., Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4, 310 (2010)CrossRefGoogle Scholar
  6. 6.
    J. Lin, X. Hu, P. Zhang, et al., Triplet excitation energy dynamics in metal-organic frameworks. J. Phys. Chem. C 117, 22250 (2013)CrossRefGoogle Scholar
  7. 7.
    C.A. Kent, D. Liu, A. Ito, et al., Rapid energy transfer in non-porous metal-organic frameworks with caged Ru(bpy)32+ chromophores: Oxygen trapping and luminescence quenching. J. Mater. Chem. A 1, 14982–14989 (2013)CrossRefGoogle Scholar
  8. 8.
    W.A. Maza, S.R. Ahrenholtz, C.C. Epley, C.S. Day, A.J. Morris, Solvothermal growth and photophysical characterization of a ruthenium(II) tris-(2,2′-bipyridine)-doped zirconium UiO-67 metal-organic framework thin film. J. Phys. Chem. C 118, 14200–14210 (2014)CrossRefGoogle Scholar
  9. 9.
    W.A. Maza, A.J. Morris, Photophysical characterization of a ruthenium(II) tris-(2,2′-bipyridine)-doped zirconium UiO-67 metal-organic framework. J. Phys. Chem. C 118, 8803–8817 (2014)CrossRefGoogle Scholar
  10. 10.
    D.E. Williams, J.A. Rietman, J.M. Maier, et al., Energy transfer on demand: photoswitch-directed behavior of metal-porphyrin frameworks. J. Am. Chem. Soc. 136, 11886–11889 (2014)CrossRefGoogle Scholar
  11. 11.
    J.T. Joyce, F.R. Laffir, C. Silien, Layer-by-layer growth and photocurrent generation in metal-organic coordination films. J. Phys. Chem. C 117, 12502–12509 (2013)CrossRefGoogle Scholar
  12. 12.
    D.Y. Lee, D.V. Shinde, S.J. Yoon, et al., Cu-based metal-organic frameworks for photovoltaic application. J. Phys. Chem. C 118, 16328–16334 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Leong, M.E. Foster, B.M. Wong, et al., Energy and charge transfer by donor-acceptor pairs confined in a metal-organic framework: a spectroscopic and computational investigation. J. Mater. Chem. A 2, 3389–3398 (2014)CrossRefGoogle Scholar
  14. 14.
    C.Y. Lee, O.K. Farha, B.J. Hong, et al., Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc. 133, 15858 (2011)CrossRefGoogle Scholar
  15. 15.
    M.C. So, S. Jin, H.J. Son, et al., Layer-by-layer fabrication of an oriented thin film based on a porphyrin-containing metal-organic framework. J. Am. Chem. Soc. 135, 15698 (2013)CrossRefGoogle Scholar
  16. 16.
    G. McDermott, S. Prince, A. Freer, et al., Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517 (1995)CrossRefGoogle Scholar
  17. 17.
    S. Patwardhan, S. Jin, H.J. Son, G.C. Schatz, Ultrafast energy migration in porphyrin-based metal-organic frameworks (MOFs). MRS Online Proc. Libr. 1539, Mrss13-1539-d06-06 (2013)Google Scholar
  18. 18.
    C.B. Murphy, Y. Zhang, T. Troxler, et al., Probing förster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J. Phys. Chem. B 108, 1537 (2004)CrossRefGoogle Scholar
  19. 19.
    J. Breu, C. Kratzer, H. Yersin, Crystal engineering as a tool for directed radiationless energy transfer in layered {Λ-[Ru (bpy)3] Δ-[Os (bpy)3]}(PF6) 4. J. Am. Chem. Soc. 122, 2548 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Devenney, L.A. Worl, S. Gould, et al., Excited state interactions in electropolymerized thin films of RuII, OsII, and ZnII polypyridyl complexes. J. Phys. Chem. A 101, 4535 (1997)CrossRefGoogle Scholar
  21. 21.
    C.N. Fleming, P. Jang, T.J. Meyer, J.M. Papanikolas, Energy migration dynamics in a Ru (II)-and Os (II)-based antenna polymer embedded in a disordered, rigid medium. J. Phys. Chem. B 108, 2205 (2004)CrossRefGoogle Scholar
  22. 22.
    C.N. Fleming, K.A. Maxwell, J.M. DeSimone, T.J. Meyer, J.M. Papanikolas, Ultrafast excited-state energy migration dynamics in an efficient light-harvesting antenna polymer based on Ru (II) and Os (II) polypyridyl complexes. J. Am. Chem. Soc. 123, 10336 (2001)CrossRefGoogle Scholar
  23. 23.
    N. Ikeda, A. Yoshimura, M. Tsushima, T. Ohno, Hopping and annihilation of 3MLCT in the crystalline solid of [Ru (bpy) 3] X2 (X= Cl-, ClO4-and PF6-). J. Phys. Chem. A 104, 6158 (2000)CrossRefGoogle Scholar
  24. 24.
    C.A. Kent, D. Liu, L. Ma, J.M. Papanikolas, T.J. Meyer, W. Lin, Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. J. Am. Chem. Soc. 133, 12940 (2011)CrossRefGoogle Scholar
  25. 25.
    C.A. Kent, D. Liu, T.J. Meyer, W. Lin, Amplified luminescence quenching of phosphorescent metal-organic frameworks. J. Am. Chem. Soc. 134, 3991 (2012)CrossRefGoogle Scholar
  26. 26.
    C.A. Kent, B.P. Mehl, L. Ma, et al., Energy transfer dynamics in metal-organic frameworks. J. Am. Chem. Soc. 132, 12767 (2010)CrossRefGoogle Scholar
  27. 27.
    S.A. Trammell, J. Yang, M. Sykora, et al., Molecular energy transfer across oxide surfaces. J. Phys. Chem. B 105, 8895 (2001)CrossRefGoogle Scholar
  28. 28.
    M. Tsushima, N. Ikeda, A. Yoshimura, K. Nozaki, T. Ohno, Solid-state photochemistry: energy-transfer and electron-transfer of 3CT in crystals of [OsxRu1− x(bpy)3]X2 (x= 0–0.23). Coord. Chem. Rev. 208, 299 (2000)CrossRefGoogle Scholar
  29. 29.
    M.D. Ward, F. Barigelletti, Control of photoinduced energy transfer between metal-polypyridyl luminophores across rigid covalent, flexible covalent, or hydrogen-bonded bridges. Coord. Chem. Rev. 216, 127 (2001)CrossRefGoogle Scholar
  30. 30.
    B. Abrahams, B. Hoskins, D. Michail, R. Robson, Assembly of porphyrin building blocks into network structures with large channels. Nature 369, 727 (1994)CrossRefGoogle Scholar
  31. 31.
    O.K. Farha, A.M. Shultz, A.A. Sarjeant, S.T. Nguyen, J.T. Hupp, Active-site-accessible, porphyrinic metal-organic framework materials. J. Am. Chem. Soc. 133, 5652 (2011)CrossRefGoogle Scholar
  32. 32.
    A.M. Shultz, A.A. Sarjeant, O.K. Farha, J.T. Hupp, S.T. Nguyen, Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 133, 13252 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Becker, A. Böhm, K. Müllen, New thermotropic dyes based on amino-substituted perylendicarboximides. Chem. Eur. J. 6, 3984 (2000)CrossRefGoogle Scholar
  34. 34.
    H.J. Son, S. Jin, et al., Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 135, 862 (2013)CrossRefGoogle Scholar
  35. 35.
    B.A. Gregg, R.A. Cormier, Doping molecular semiconductors: n-type doping of a liquid crystal perylene diimide. J. Am. Chem. Soc. 123, 7959 (2001)CrossRefGoogle Scholar
  36. 36.
    A. Breeze, A. Salomon, D. Ginley, Polymer – perylene diimide heterojunction solar cells. Appl. Phys. Lett. 81, 3085 (2002)CrossRefGoogle Scholar
  37. 37.
    H. Langhals, O. Krotz, K. Polborn, P. Mayer, A novel fluorescent dye with strong, anisotropic solid-state fluorescence, small stokes shift, and high photostability. Angew. Chem. Int. Ed. 44, 2427 (2005)CrossRefGoogle Scholar
  38. 38.
    H.J. Park, M.C. So, et al., Layer-by-layer assembled films of perylene diimide-and squaraine-containing metal–organic framework-like materials: solar energy capture and directional energy transfer. ACS Appl. Mater. Interfaces 8(38), 24983–24988 (2016)CrossRefGoogle Scholar
  39. 39.
    V. Stavila, J. Volponi, A.M. Katzenmeyer, M.C. Dixon, M.D. Allendorf, Kinetics and mechanism of metal-organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes. Chem. Sci. 3(5), 1531–1540 (2012)CrossRefGoogle Scholar
  40. 40.
    M.C. So, S. Jin, H.J. Son, G.P. Wiederrecht, O.K. Farha, J.T. Hupp, Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks. J. Am. Chem. Soc. 135(42), 15698–15701 (2013)CrossRefGoogle Scholar
  41. 41.
    H. Lu, S. Zu, Interfacial synthesis of free-standing metal-organic framework membranes. Eur. J. Inorg. Chem., 8, 1294–1300 (2013)CrossRefGoogle Scholar
  42. 42.
    S.D. Sathaye, K.R. Patil, D.V. Paranjape, et al., Preparation of Q-cadmium sulfide ultrathin films by a new liquid-liquid interface reaction technique (LLIRT). Langmuir 16, 3487–3490 (2000)CrossRefGoogle Scholar
  43. 43.
    C.N.R. Rao, G.U. Kulkarni, V.V. Agrawal, U.K. Gautam, M. Ghosh, U. Tumkurkar, Use of the liquid-liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides. J. Colloid Interface Sci. 289(2), 305–318 (2005)CrossRefGoogle Scholar
  44. 44.
    C.N.R. Rao, K.P. Kalyanikutty, The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc. Chem. Res. 41(4), 489–499 (2008)CrossRefGoogle Scholar
  45. 45.
    V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, Nature and properties of ultrathin nanocrystalline gold films formed at the organic-aqueous interface. J. Phys. Chem. 109(15), 7300–7305 (2005)CrossRefGoogle Scholar
  46. 46.
    G.L.e.a. Stansfield, Growth of nanocrystals and thin films at the water-oil interface. Phil. Trans. R. Soc. A 368, 4313–4330 (2010)CrossRefGoogle Scholar
  47. 47.
    D. Sheberla, L. Sun, M. Blood-Forsythe, e. al, High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 a semiconducting metal organic graphene analog. J. Am. Chem. Soc. 136, 8859–8862 (2014)CrossRefGoogle Scholar
  48. 48.
    D. Fan, P.J. Thomas, P. O’Brien, Deposition of CdS and ZnS thin films at the water/toluene interface. J. Mater. Chem. 17, 1381–1386 (2007)CrossRefGoogle Scholar
  49. 49.
    G. Wu, J. Huang, Y. Zang, et al., Porous field-effect transistor based on a semiconducting metal-organic framework. J. Am. Chem. Soc. 139, 1360–1363 (2017)CrossRefGoogle Scholar
  50. 50.
    J. Berry, T. Buonassisi, D.A. Egger, et al., Hybrid organic-inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27(35), 5102–5112 (2015)CrossRefGoogle Scholar
  51. 51.
    H.S. Kim, N.G. Park, Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5(17), 2927–2934 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryCalifornia State University, ChicoChicoUSA

Personalised recommendations