First-Principles Simulations for CuInGaSe2 (CIGS) Solar Cells

  • Yu-Wen Cheng
  • Hong-Tao Xue
  • Fu-Ling TangEmail author
  • Jingbo Louise Liu


In this chapter, simulations for CuInGaSe2 (CIGS) solar cell materials are illustrated from the viewpoint of first-principles calculations. The solar cell materials under high pressure, upon doping, the atomistic distribution in solar cell materials, and the interface in solar cells were studied. Their lattice structure and mechanics, optical, and electrical properties were studied. Our purpose is to obtain quantitative atomic and electronic structure information in the battery material, and then to understand the relationship among composition, structure, and performance. This will help to design element composition and to determine the technical process parameters. Our study may provide theoretical guidance and help to reduce the usage of highly toxic and scarce elements, reduce battery manufacturing costs, and mitigate potential environmental pollution. In addition, interface states in CuInGaSe2 thin-film solar cell always do harm to its overall performance by reducing both open-circuit voltage and photoelectric conversion efficiency. In order to maximally weaken the negative impacts of interface states, we used the first-principles calculation to systematically study the local structures and electronic properties of the interfaces. The aim of these simulations was to deeply understand the relationship among the local structures of the interfaces, interface states, and CuInGaSe2 thin-film solar cell performances, and to reveal the micro-mechanism of photoelectric changes introduced by interface states. As theoretical guides, quantitative results at atomic scale will be helpful to design the chemical components of the cell’s materials and those at the interfaces, to modify the interface structures, to manipulate the interface properties, to take advantage of so-called interface engineering, and then to improve the cell’s performances.


Solar cells First-principles calculation Band gap Density of states Electronic and optical properties Conversion efficiency 



This work was financially supported by the National Natural Science Foundation of China (10964003, 11164014, and 11364025), the Petroleum Research Fund of the American Chemical Society (53827-UR10), and the Robert Welch Foundation (Departmental Grant, AC-0006).

The work in this chapter was performed in the Gansu Supercomputer Center. F.-L. Tang was financially supported by the Chinese Scholarship Council (201408625041). The authors thank the editors in allowing us to extend our previously published works as in the references.


  1. 1.
    W. Bao, M. Ichimura, Band offsets at the ZnO/Cu2ZnSnS4 interface based on the first principles calculation. Jpn. J. Appl. Phys. 52, 061203 (2013)CrossRefGoogle Scholar
  2. 2.
    P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994)CrossRefGoogle Scholar
  3. 3.
    I.V. Bodnar, I.N. Tsyrelchuk, I.A. Victorov, Preparation and analysis of the CuAlxln1−xSe2 solid solutions. J. Mater. Sci. Lett. 13, 762–764 (1994)CrossRefGoogle Scholar
  4. 4.
    Y.W. Cheng, F.L. Tang, H.T. Xue, et al., Bonding and electronic properties of the Cu2ZnSnS4/WZ-ZnO interface from first-principles calculations. J. Phys. D. Appl. Phys. 49, 285107 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.W. Cheng, F.L. Tang, H.T. Xue, et al., First-principles study on electronic properties and lattice structures of WZ-ZnO/CdS interface. Mater. Sci. Semicond. Process. 45, 9–16 (2016)CrossRefGoogle Scholar
  6. 6.
    Y.W. Cheng, F.L. Tang, H.T. Xue, et al., Passivation for Cu2ZnSnS4/WZ-ZnO interface states: from the first principles calculations. Appl. Surf. Sci. 394, 58–62 (2017)CrossRefGoogle Scholar
  7. 7.
    J.W.D. Connolly, A.R. Williams, Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27, 5169 (1983)CrossRefGoogle Scholar
  8. 8.
    Z. Derkaoui, Z. Kebbab, R. Miloua, et al., Theoretical study of optical characteristics of multilayer coatings ZnO/CdS/CdTe using first-principles calculations. Solid State Commun. 149, 1231–1235 (2009)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Dong, Y.F. Li, B. Yao, et al., An experimental and first-principles study on band alignments at interfaces of Cu2ZnSnS4/CdS/ZnO heterojunctions. J. Phys. D. Appl. Phys. 47, 075304 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Engelmann, B.E. McCandless, R.W. Birkmire, Formation and analysis of graded CuIn(Se1−ySy)2 films. Thin Solid Films 387, 14–17 (2001)CrossRefGoogle Scholar
  11. 11.
    Y.N. Gornostyrev, M.I. Katsnelson, N.I. Medvedeva, et al., Peculiarities of defect structure and mechanical properties of iridium: results of ab initio electronic structure calculations. Phys. Rev. B 62, 7802 (2000)CrossRefGoogle Scholar
  12. 12.
    T. Hong, J.R. Smith, D.J. Srolovitz, Adhesion at a heterophase interface: first-principles study of Mo (001)/MoSi2 (001). Interface Sci. 1, 223–235 (1994)CrossRefGoogle Scholar
  13. 13.
    G.Y. Huang, C.Y. Wang, J.T. Wang, Detailed check of the LDA+ U and GGA+ U corrected method for defect calculations in wurtzite ZnO. Comput. Phys. Commun. 183, 1749–1752 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Huang, S. Chen, H.X. Deng, et al., Origin of reduced efficiency in Cu(In, Ga)Se2 solar cells with high Ga concentration: alloy solubility versus intrinsic Defects. IEEE J. Photovoltaics 4, 477–482 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  16. 16.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRefGoogle Scholar
  17. 17.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
  18. 18.
    Y. Kumagai, Y. Soda, F. Oba, et al., First-principles calculations of the phase diagrams and band gaps in CuInSe2-CuGaSe2 and CuInSe2-CuAlSe2 pseudobinary systems. Phys. Rev. B 85, 033203 (2012)CrossRefGoogle Scholar
  19. 19.
    X.K. Li, H.T. Xue, F.L. Tang, et al., First-principles calculation of sulfur-selenium segregation in ZnSe1-xSx: the role of lattice vibration. Mater. Sci. Semicond. Process. 39, 96–102 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, M.R. Halfmoon, C.A. Rittenhouse, et al., Passivation effects of fluorine and hydrogen at the SiC-SiO2 interface. Appl. Phys. Lett. 97, 242111 (2010)CrossRefGoogle Scholar
  21. 21.
    X. Liu, H. Cui, W. Li, et al., Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Phys. Status Solidi (RRL)-Rapid Res. Lett. 8, 966–970 (2014)CrossRefGoogle Scholar
  22. 22.
    H.X. Liu, F.L. Tang, H.T. Xue, et al., Lattice structures and electronic properties of WZ-CuInS2/MoS2 interface from first-principles calculations. Appl. Surf. Sci. 351, 382–391 (2015)CrossRefGoogle Scholar
  23. 23.
    C.D.R. Ludwig, T. Gruhn, C. Felser, et al., Indium-Gallium Segregation in CuInxGa1−xSe2: an ab initio-based Monte Carlo study. Phys. Rev. Lett. 105, 025702 (2010)CrossRefGoogle Scholar
  24. 24.
    F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944)CrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  26. 26.
    J. Pohl, K. Albe, Thermodynamics and kinetics of the copper vacancy in CuInSe2, CuGaSe2, CuInS2, and CuGaS2 from screened-exchange hybrid density functional theory. J. Appl. Phys. 108, 023509 (2010)CrossRefGoogle Scholar
  27. 27.
    B. Puchala, A. Van der Ven, Thermodynamics of the Zr-O system from first-principles calculations. Phys. Rev. B 88, 094108 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Sandino, E. Romero, J.S. Oyola, et al., Study of the Mo/CuInS2/ZnS system by TEM. Sol. Energy Mater. Sol. Cells 95, 2006–2009 (2011)CrossRefGoogle Scholar
  29. 29.
    C.J. Sheppard, V. Alberts, Deposition of single-phase CuIn(Se, S)2 thin films from the sulfurization of selenized CuIn alloys. J. Phys. D. Appl. Phys. 39, 3760 (2006)CrossRefGoogle Scholar
  30. 30.
    C.J. Sheppard, V. Alberts, W.J. Bekker, Deposition of CuIn(Se, S)2 thin films by sulfurization of selenized Cu/In alloys. Phys. Status Solidi B 201, 2234–2238 (2004)CrossRefGoogle Scholar
  31. 31.
    C.J. Sheppard, V. Alberts, J.R. Botha, Structural and optical characterization of single-phase CuIn(Se, S)2 thin films deposited using a two-step process. Phys. Status Solidi C 5, 641–644 (2008)CrossRefGoogle Scholar
  32. 32.
    F.L. Tang, Z.X. Zhu, H.T. Xue, et al., Optical properties of Al-doped CuInSe2 from the first principle calculation. Physica B 407, 4814–4818 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Tani, K. Sato, H. Katayama-Yoshida, Materials design of spinodal nanodecomposition in CuIn1−xGaxSe2 for high-efficiency solar energy conversion. Appl. Phys. Express 3, 101201 (2010)CrossRefGoogle Scholar
  34. 34.
    T. Tinoco, C. Rincón, M. Quintero, et al., Phase diagram and optical energy gaps for CuInyGa1−ySe2 alloys. Phys. Status Solidi A 124, 427–434 (1991)CrossRefGoogle Scholar
  35. 35.
    T. Tinoco, J.P. Itié, A. Polian, et al., Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure. J. Phys. IV 4, 151–154 (1994)Google Scholar
  36. 36.
    S. Tomić, L. Bernasconi, B.G. Searle, et al., Electronic and optical structure of wurtzite CuInS2. J. Phys. Chem. C 118, 14478–14484 (2014)CrossRefGoogle Scholar
  37. 37.
    A. Van De Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002)CrossRefGoogle Scholar
  38. 38.
    W. Wang, K. Xiong, G. Lee, et al., Origin of HfO2/GaAs interface states and interface passivation: a first-principles study. Appl. Surf. Sci. 256, 6569–6573 (2010)CrossRefGoogle Scholar
  39. 39.
    J.H. Werner, J. Mattheis, U. Rau, Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In, Ga)Se2. Thin Solid Films 480, 399–409 (2005)CrossRefGoogle Scholar
  40. 40.
    H.T. Xue, W.J. Lu, Z.X. Zhu, et al., Al-doped CuInSe2: an ab initio study of structural and electronic properties of photovoltaic material. Adv. Mater. Res. 512, 1543–1547 (2012)CrossRefGoogle Scholar
  41. 41.
    H.T. Xue, F.L. Tang, W.J. Lu, et al., First-principles investigation of structural phase transitions and electronic properties of CuGaSe2 up to 100GPa. Comput. Mater. Sci. 67, 21–26 (2013)CrossRefGoogle Scholar
  42. 42.
    H.T. Xue, W.J. Lu, F.L. Tang, et al., Phase diagram of the CuInSe2-CuGaSe2 pseudobinary system studied by combined ab initio density functional theory and thermodynamic calculation. J. Appl. Phys. 116, 053512 (2014)CrossRefGoogle Scholar
  43. 43.
    H.T. Xue, F.L. Tang, T. Gruhn, et al., Generalized stacking fault energies, cleavage energies, ionicity and brittleness of Cu(Al/Ga/In)Se2 and CuGa(S/Se/Te)2. Model. Simul. Mater. Sci. Eng. 22, 035002 (2014)CrossRefGoogle Scholar
  44. 44.
    H.T. Xue, F.L. Tang, X.K. Li, et al., Phase equilibrium of a CuInSe2-CuInS2 pseudobinary system studied by combined first-principles calculations and cluster expansion Monte Carlo simulations. Mater. Sci. Semicond. Process. 25, 251–257 (2014)CrossRefGoogle Scholar
  45. 45.
    H.T. Xue, F.L. Tang, F.Z. Zhang, et al., Effect of temperature on the distribution and inhomogeneity degree of Se-S atoms in CuIn(Se1−xSx)2 alloys. J. Phys. D. Appl. Phys. 49, 025101 (2016)CrossRefGoogle Scholar
  46. 46.
    H.T. Xue, F.L. Tang, F.Z. Zhang, et al., Temperature effects on distribution and inhomogeneous degree of In-Ga atoms in CuIn1−xGaxSe2 alloys. Mater. Lett. 164, 169–171 (2016)CrossRefGoogle Scholar
  47. 47.
    Y. Yan, R. Noufi, K.M. Jones, et al., Chemical fluctuation-induced nanodomains in Cu(In, Ga)Se2 films. Appl. Phys. Lett. 87, 121904 (2005)CrossRefGoogle Scholar
  48. 48.
    G. Yang, Y.F. Li, B. Yao, et al., Band alignments at the interface of Cu2ZnSnS4/ZnO heterojunction: an X-ray photoelectron spectroscopy and first-principles study. J. Alloys Compd. 628, 293–297 (2015)CrossRefGoogle Scholar
  49. 49.
    Y. Zhang, F.L. Tang, H.T. Xue, et al., Lattice structures and electronic properties of Mo/MoSe2 interface from first-principles calculations. Phys. E. 66, 342–349 (2015)CrossRefGoogle Scholar
  50. 50.
    J.G. Zhou, D.M. Causon, C.G. Mingham, et al., The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys. 168, 1–25 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Wen Cheng
    • 1
  • Hong-Tao Xue
    • 1
  • Fu-Ling Tang
    • 1
    • 2
    Email author
  • Jingbo Louise Liu
    • 3
    • 4
  1. 1.Department of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.Department of ChemistryTexas A&M UniversityKingsvilleUSA
  3. 3.Department of ChemistryTexas A&M University-KingsvilleKingsvilleUSA
  4. 4.Department of ChemistryTexas A&M University (TAMU)College StationUSA

Personalised recommendations