Thermal Energy Storage Systems Based on Metal Hydride Materials

  • Claudio CorgnaleEmail author
  • Bruce Hardy


A comprehensive techno-economic analysis of candidate metal hydride materials, used for thermal energy storage applications, is carried out. The selected systems show the potential to exceed the performance of latent heat or phase change heat storage systems and can closely approach the US Department of Energy targets for concentrating solar power plant applications. A paired metal hydride system is selected as possible thermal energy storage to be integrated with high-temperature steam power plants. Its performance is simulated adopting a finite element-based detailed transport phenomena model. Results show the ability of the system to achieve the required operating temperatures and to store and release thermal energy appropriately.



This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DE-EE0007118. The authors wish to acknowledge Dr. L. Irwin, Mr. M. Lausten, PE, and Dr. A. Schultz, who were the US Department of Energy managers, for their useful discussions and direction. The authors also wish to thank Drs. R. Zidan and A. d’Entremont (Savannah River National Laboratory, USA), Dr. T. Motyka (Greenway Energy, USA), Drs. C. Buckley and D. Sheppard (both Curtin University, Australia), and Mr. S. Sullivan (Brayton Energy, USA).


“This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”


  1. 1.
  2. 2.
    A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, et al., State of the art on high-temperature thermal energy storage for power generation. Part 1 – concepts, materials, and modellization. Renew. Sust. Energ. Rev. 14, 31–55 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Stekli, L. Irwin, R. Pitchumani, Technical challenges and opportunities for concentrating solar power with thermal energy storage. J. Therm. Sci. Eng. Appl. 5, 021011-1-12 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Izquierdo, C. Montanes, C. Dopazo, N. Fueyo, Analysis of CSP plants for the definition of energy policies: the influence on electricity cost of solar multiples, capacity factors, and energy storage. Energy Policy 38(10), 6215–6221 (2010)CrossRefGoogle Scholar
  5. 5.
    P. Denholm, M. Hand, Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 39(3), 1817–1830 (2011)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    R. Dominguez, L. Baringo, A. Conejo, An optimal strategy for a concentrating solar power plant. Appl. Energy 98, 316–325 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Kuravi, J. Trahan, Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39(4), 285–319 (2013)CrossRefGoogle Scholar
  9. 9.
    C. Corgnale, B. Hardy, T. Motyka, R. Zidan, J. Teprovich, B. Peters, Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants. Renew. Sust. Energ. Rev. 38, 821–833 (2014)CrossRefGoogle Scholar
  10. 10.
    D.A. Sheppard, M. Paskevicius, T.D. Humphries, M. Felderhoff, G. Capurso, J. Bellosta von Colbe, et al., Metal hydrides for concentrating solar thermal power energy storage. Appl. Phys. A 122, 395 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Bogdanovic, A. Ritter, B. Spliethoff, Active MgH2-Mg systems for reversible chemical energy-storage. Angew. Chem. Int. Ed. Engl. 29(3), 223–234 (1990)CrossRefGoogle Scholar
  12. 12.
    L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2002)CrossRefGoogle Scholar
  13. 13.
    L. Schlapbach, Hydrogen-fuelled vehicles. Nature 460, 809–811 (2009)CrossRefGoogle Scholar
  14. 14.
    B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy 32(9), 1121–1140 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Bellosta von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, et al., Application of hydrides in hydrogen storage and compression: achievements, outlook, and perspectives. Int. J. Hydrog. Energy 44(15), 7780–7808 (2019)CrossRefGoogle Scholar
  16. 16.
    M.V. Lototskyy, V.A. Yartys, B.G. Pollet, R.C. Bowman, Metal hydride hydrogen compressors: a review. Int. J. Hydrog. Energy 39(11), 5818–5851 (2014)CrossRefGoogle Scholar
  17. 17.
    P.M. Golben, J.M. Rosso: Hydrogen compressor. US Patent US4402187A, published 1983Google Scholar
  18. 18.
    C. Corgnale, M. Sulic, Techno-economic analysis of high-pressure metal hydride compression systems. Metals 8(6), 469 (2018)CrossRefGoogle Scholar
  19. 19.
    X.Y. Chen, L.X. Wei, L. Deng, F.S. Yang, Z.X. Zhang, A review on the metal hydride based hydrogen purification and separation technology. Appl. Mech. Mater. 448, 3027–3036 (2014)Google Scholar
  20. 20.
    P. Chen, Z. Xiong, J. Luo, J. Lin, K. Lee Tan, Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002)CrossRefGoogle Scholar
  21. 21.
    G.J. Grashoff, C.E. Pilkington, C.W. Corti, The purification of hydrogen. Platin. Met. Rev. 27(4), 157–169 (1983)Google Scholar
  22. 22.
    N.C. Srivastava, I.W. Eames, A review of adsorbents and adsorbates in solid–vapor adsorption heat pump systems. Appl. Therm. Eng. 18(9–10), 707–714 (1998)CrossRefGoogle Scholar
  23. 23.
    T. Nishizaki, M. Miyamoto, K. Miyamoto, K. Yoshida, K. Yamaji, Y. Nakata: Metal hydride heat pump system. US Patent US4523635A, published 1985Google Scholar
  24. 24.
    P. Mathukumar, M. Groll, Metal hydride based heating and cooling systems: a review. Int. J. Hydrog. Energy 35(8), 3817–3831 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Mohan, M. Sharma, S.V. Kumar, E. Anil Kumar, A. Satheesh, P. Muthukumar, Performance analysis of metal hydride based simultaneous cooling and heat transformation system. Int. J. Hydrog. Energy 44(21), 10906–10915 (2019)CrossRefGoogle Scholar
  26. 26.
    C. Corgnale, T. Motyka, S. Greenway, J. Perez-Berrios, A. Nakano, I. Ito, Metal hydride bed system model for renewable source driven regenerative fuel cell. J. Alloy Compd. 580(1), S406–S409 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Bloch, M.H. Mintz, Kinetics and mechanisms of metal hydride formation – a review. J. Alloys Compd. 253, 529–541 (1997)CrossRefGoogle Scholar
  28. 28.
    B.J. Hardy, D.L. Anton, Hierarchical methodology for modeling hydrogen storage systems. Part I: Scoping models. Int. J. Hydrog. Energy 34, 2269–2277 (2009)CrossRefGoogle Scholar
  29. 29.
    B.J. Hardy, D.L. Anton, Hierarchical methodology for modeling hydrogen storage systems. Part II: Detailed models. Int. J. Hydrog. Energy 34, 2992–3004 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Wolf: Hydrogen sponge heat pump. 10th Intersociety Energy Conversion Engineering Conf. (IECEC), Paper 759196 (1975)Google Scholar
  31. 31.
    A.W. McClaine: Method and apparatus for heat transfer, using metal hydrides. US Patent 4,039,023 (1977)Google Scholar
  32. 32.
    K.J. Kim, K.T. Feldman Jr, G. Lloyd, A. Razani, Compressor-driven metal-hydride heat pumps. Appl. Therm. Eng. 17(6), 551–560 (1997)CrossRefGoogle Scholar
  33. 33.
    Z. Ma, C. Turchi: Advanced supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems. Conference Paper NREL/CP-5500-50787 March 2011Google Scholar
  34. 34.
    J.N. Phillips: Supercritical CO2 Brayton power cycles, in 5th International Supercritical CO2 Power Cycles Symposium March 30, 2016Google Scholar
  35. 35.
    A. Rimpel, N. Smith, J. Wilkes, H. Delgado, T. Allison, R.A. Bidkar, et al. Test rig design for large supercritical CO2 turbine seals, in The 6th International Supercritical CO2 Power Cycles Symposium March 27–29, 2018, Pittsburgh, PennsylvaniaGoogle Scholar
  36. 36.
    R.T. Caldwell, J.W. McDonald, A. Pietsch, Solar-energy receiver with lithium-hydride heat storage. Sol. Energy 9, 48–60 (1965)CrossRefGoogle Scholar
  37. 37.
    R.J. Hanold, R.D. Johnston: Power plant heat storage arrangement. US Patent US3029596 (1962)Google Scholar
  38. 38.
    B. Bogdanovic, T.H. Hartwig, B. Spliethoff, The development, testing, and optimization of energy-storage materials based on the MgH2-Mg system. Int. J. Hydrog. Energy 18(7), 575–589 (1993)CrossRefGoogle Scholar
  39. 39.
    B. Bogdanovic, H. Hofmann, A. Neuy, A. Reiser, K. Schlichte, Ni-doped versus undoped Mg–MgH2 materials for high-temperature heat or hydrogen storage. J. Alloys Compd. 292, 57–71 (1999)CrossRefGoogle Scholar
  40. 40.
    M. Felderhoff, B. Bogdanović, High-temperature metal hydrides as heat storage materials for solar and related applications. Int. J. Mol. Sci. 10, 325–344 (2009)CrossRefGoogle Scholar
  41. 41.
    B. Bogdanović, A. Ritter, B. Spliethoff, K. Straßburger, A process steam generator based on the high-temperature magnesium hydride/magnesium heat storage system. Int. J. Hydrog. Energy 20, 811–822 (1995)CrossRefGoogle Scholar
  42. 42.
    M. Wierse, R. Werner, Magnesium hydride for thermal energy storage in a small-scale solar-thermal power station. J. Less Common Met. 172–174(3), 1111–1121 (1991)CrossRefGoogle Scholar
  43. 43.
    A. Reiser, B. Bogdanovic, K. Schlichte, The application of Mg-based metal-hydrides as heat energy storage systems. Int. J. Hydrog. Energy 25, 425–430 (2000)CrossRefGoogle Scholar
  44. 44.
    D. Sheppard, M. Paskevicius, C. Buckley, Thermodynamics of hydrogen desorption from NaMgH3 and its application as a solar heat storage medium. Chem. Mater. 23, 4298–4300 (2011)CrossRefGoogle Scholar
  45. 45.
    B. Bogdanović, A. Reiser, K. Schlichte, B. Spliethoff, B. Tesche, Thermodynamics and dynamics of the Mg-Fe H system and its potential for thermochemical thermal energy storage. J. Alloys Comp. 345, 77–89 (2002)CrossRefGoogle Scholar
  46. 46.
    D. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicious, et al., Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Adv. 4, 26552–26562 (2014)CrossRefGoogle Scholar
  47. 47.
    P. Ward, C. Corgnale, J. Teprovich, T. Motyka, B. Hardy, B. Peters, et al., High-performance metal hydride based thermal energy storage systems for concentrating solar power applications. J. Alloys Compd. 645(1), S374–S378 (2015)CrossRefGoogle Scholar
  48. 48.
    C. Corgnale, B. Hardy, T. Motyka, R. Zidan, Metal hydride based thermal energy storage system requirements for high performance concentrating solar power plants. Int. J. Hydrog. Energy 41(44), 20217–20230 (2016)CrossRefGoogle Scholar
  49. 49.
    T.D. Humphries, D.A. Sheppard, M.R. Rowles, M.V. Sofianos, C.E. Buckley, Fluoride substitution in sodium hydride for thermal energy storage applications. J. Mater. Chem. A 4, 12170–12178 (2016)CrossRefGoogle Scholar
  50. 50.
    D. Harries, A novel thermochemical energy storage technology, in Proceedings of EcoGeneration Conf, Sydney, Australia (2010)Google Scholar
  51. 51.
    P.A. Ward, J.A. Teprovich, Y. Liu, J. He, R. Zidan, High-temperature thermal energy storage in the CaAl2 system. J. Alloys Compd. 735, 2611–2615 (2018)CrossRefGoogle Scholar
  52. 52.
    I. Yonezu, K. Nasako, N. Honda, T. Sakai, Development of thermal energy storage technology using metal hydrides. J. Less Common Met. 89(2), 351–358 (1983)CrossRefGoogle Scholar
  53. 53.
    S. Chumphongphan, M. Paskevicius, D. Sheppard, C. Buckley, Effect of Al and Mo substitution on the structural and hydrogen storage properties of CaNi5. Int. J. Hydrog. Energy 38, 2325–2331 (2013)CrossRefGoogle Scholar
  54. 54.
    G.G. Libowitz: Thermal energy storage systems employing metal hydrides. US Patent: US4040410 (1977)Google Scholar
  55. 55.
    G. Libowitz, Z. Blank, Solid metal hydrides: properties relating to their application in solar heating and cooling, in Solid State Chemistry of Energy Conversion and Storage, ed. by J. B. Goodenough, M. S. Whittingham, (ACS, Washington, DC, 1976), pp. 271–283Google Scholar
  56. 56.
    D. Harries, M. Paskevicius, D. Sheppard, T. Price, C. Buckley, Concentrating solar thermal heat storage using metal hydrides. Proc. IEEE 100, 539–549 (2012)CrossRefGoogle Scholar
  57. 57.
    B. Bogdanovic, M. Schwickardi, Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 253–254, 1–9 (1997)CrossRefGoogle Scholar
  58. 58.
    T. Motyka: Savannah River National Laboratory Regenerative Fuel Cell Project. SRNL-STI-2008-00388, Nov. 11, 2008 (2008)Google Scholar
  59. 59.
    K.M. Guthrie, Data and techniques for preliminary capital cost estimating. Chem. Eng. Prog. 76(6), 114–142 (1969)Google Scholar
  60. 60.
    E. Douglas, Industrial Chemical Process Design (McGraw-Hill Professional Engineering, New York (USA) 2003)Google Scholar
  61. 61.
  62. 62.
    A. Chaise, P. De Rango, P. Marty, D. Fruchart, Experimental and numerical study of a magnesium hydride tank. Int. J. Hydrog. Energy 35, 6311–6322 (2010)CrossRefGoogle Scholar
  63. 63.
  64. 64.
    P. Di Pietro, E. Skolnik: Analysis of the sodium hydride-based hydrogen storage system, in Proceedings of the 2000 Hydrogen Program NREL/CP-570-28890, Washington DC (USA), (2000)Google Scholar
  65. 65.
    W. Mueller, J. Blackledge, G. Libowitz, Metal Hydrides (Academic, New York/London, 1968)Google Scholar
  66. 66.
    C. Corgnale, B.J. Hardy, D.A. Tamburello, S.L. Garrison, D.L. Anton, Acceptability envelops for metal hydride-based hydrogen storage systems. Int. J. Hydrog. Energy 37, 2812–2824 (2012)CrossRefGoogle Scholar
  67. 67.
    J.M. Pasini, C. Corgnale, B. van Hassel, T. Motyka, S. Kumar, K. Simmons, Metal hydride material requirements for automotive hydrogen storage systems. Int. J. Hydrog. Energy 38(23), 9755–9765 (2013)CrossRefGoogle Scholar
  68. 68.
    C. Corgnale, W. Summers, Solar hydrogen production by the hybrid sulfur process. Int. J. Hydrog. Energy 36(18), 11604–11619 (2011)CrossRefGoogle Scholar
  69. 69.
    A. d’Entremont, C. Corgnale, B. Hardy, R. Zidan, Simulation of high-temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants. Int. J. Hydrog. Energy 43(2), 817–830 (2018)CrossRefGoogle Scholar
  70. 70.
    F. Cziesla, J. Bewerunge, A. Senzel: Lunen – state of the art Ultra Supercritical Steam Power Plant under construction. POWER-GEN Europe 2009, Cologne, Germany (2009). Available online at Accessed Jan 2019
  71. 71.
    Website: Accessed Nov 2016
  72. 72.
    T. Gamo, Y. Moriwaki, N. Yanagihara, T. Yamashita, T. Iwaki, Formation and properties of titanium-manganese alloy hydrides. Int. J. Hydrog. Energy 19(1), 39–47 (1985)CrossRefGoogle Scholar
  73. 73.
    T.A. Zotov, R.B. Sivov, E.A. Movlaev, S.V. Mitrokhin, V.N. Verbetsky, IMC hydrides with high hydrogen dissociation pressure. J. Alloys Compd. 509S, 839S–843S (2011)CrossRefGoogle Scholar
  74. 74.
    G. Kolb, C. Ho, T. Mancini, J. Gary: Power tower technology roadmap and cost reduction plan. Sandia Report SAND2011-2419, April 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Greenway Energy, LLCAikenUSA
  2. 2.Savannah River National LaboratoryAikenUSA

Personalised recommendations