Signaturen des Lebens

  • Aleksandar Janjic


Leben verändert abiotische Bedingungen und hinterlässt mitunter massive Spuren in der Umwelt – sei es durch Bakterien vor Milliarden von Jahren oder durch uns Menschen heute. Die Suche nach solchen Ökosignaturen auf fernen Welten hat bereits begonnen. Doch welche Indikatoren für Leben sind besonders aufschlussreich und welche Welten sollen zuerst untersucht werden?


  1. Abramowski A, Aharonian F, Ait Benkhali F et al (2016) Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 531:476–479CrossRefGoogle Scholar
  2. Anglada-Escude G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440CrossRefGoogle Scholar
  3. Anglada-Escude G, Tuomi M (2015) Comment on „Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581“. Science 347:1080CrossRefGoogle Scholar
  4. Atri D, Melott AL (2011) Terrestrial effects of high-energy cosmic rays. Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011:415–417Google Scholar
  5. Atri D, Melott AL (2014) Cosmic rays and terrestrial life: A brief review. Astropar Phys 53:186–190CrossRefGoogle Scholar
  6. Ayres TR (2018) Chandra X-ray time-Domain study of Alpha Centauri AB, procyon, and their environs. 232nd Meeting of the American Astronomical Society, id. 317.14Google Scholar
  7. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. PNAS 115:6506–6511CrossRefGoogle Scholar
  8. Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler Mission. PNAS 111:12647–12654CrossRefGoogle Scholar
  9. Batygin K, Brown ME (2016) Evidence for a distant giant planet in the solar system. Astron J 151:22CrossRefGoogle Scholar
  10. Becker JC, Khain T, Hamilton SJ et al (2018) Discovery and dynamical analysis of an extreme trans-Neptunian object with a high orbital inclination. Astron J 156:81CrossRefGoogle Scholar
  11. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1. billion-year-old zircon. PNAS 112(47):14518–14521CrossRefGoogle Scholar
  12. Benca JP, Duijnstee IAP, Looy CV (2018) UV-B-induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci Adv 4(2):e1700618CrossRefGoogle Scholar
  13. Betts B, Nye B, Vaughn J et al (2017) LightSail 1 mission results and public outreach strategies. Fourth International Symposium on Solar Sailing 2017, Kyoto, JapanGoogle Scholar
  14. Boetius A, Ravenschlag K, Schuber CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  15. Bose A, Gardel EJ, Vidoudez C et al (2014) Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5:3391CrossRefGoogle Scholar
  16. Boyajian TS, LaCourse DM, Rappaport SA et al (2016) Planet Hunters IX. KIC 8462852 – where’s the flux? Mon Not R Astron Soc 457(4):3988–4004CrossRefGoogle Scholar
  17. Boyajian TS, Alonso R, Ammerman A et al (2018) The first post-Kepler brightness Dips of KIC 8462852. Astrophys J Lett 853:L8Google Scholar
  18. Bradley AS (2016) The sluggish speed of making abiotic methane. PNAS 113:13944–13946CrossRefGoogle Scholar
  19. Brasier MD, Antcliffe A, Saunders M, Wacey D (2015) Changing the picture of Earth’s earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries. PNAS 112:4859–4864CrossRefGoogle Scholar
  20. Campante TL, Barclay T, Swift JJ et al (2015) An ancient extrasolar system with five sub-Earth-size planets. Astrophys J 799:170CrossRefGoogle Scholar
  21. Cash W, Kasdin J, Seager S et al (2005) Direct studies of exo-planets with the New Worlds Observer. Proc. SPIE 5899, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts 2, 58990SGoogle Scholar
  22. Catling DC, Krissansen-Totton J, Kiang NY et al (2018) Exoplanet biosignatures: a framework for their assessment. Astrobiology 18:709–738CrossRefGoogle Scholar
  23. Chauvin G, Lagrange A-M, Dumas C et al (2004) A giant planet candidate near a young brown dwarf. Astron Astrophs 425:L29–L32CrossRefGoogle Scholar
  24. Clery D (2018) Newborn exoplanet eyed for moons and rings. Science 359:258CrossRefGoogle Scholar
  25. Cliver EW, Dietrich WF (2013) The 1859 space weather event revisited: limits of extreme acitivity. J Space Weather Space Clim 3:A31CrossRefGoogle Scholar
  26. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292CrossRefGoogle Scholar
  27. Covey KR, Wood SA, Warren R II et al (2012) Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705CrossRefGoogle Scholar
  28. Crossfield IJ (2016) Exoplanet atmospheres and giant ground-based telescopes. arXiv:1604.06458Google Scholar
  29. Crowe MJ (1986) The extraterrestrial life debate, 1750–1900. Cambridge University Press, CambridgeGoogle Scholar
  30. DasSarma S, Schwieterman EW (2018) Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. Int J Astrobiol. Scholar
  31. De Bergh C, Bezard B, Owen T et al (1991) Deuterium on venus: observations from earth. Sci 251:547–549CrossRefGoogle Scholar
  32. Des Marais DJ, Walter MR (1999) Astrobiology: exploring the origins, evolution, and distribution of life in the Universe. Annu Rev Ecol Syst 30:397–420CrossRefGoogle Scholar
  33. Diez Alonso E, Gonzalez Hernandez JI, Suarez Gomez SL et al (2018) Two planetary systems with transiting Earth-sized and super-Earth planets orbiting late-type dwarf stars. Monthly Not R Astron Soc: Lett 480:L1–L5Google Scholar
  34. Dittmann JA, Irwin JM, Charbonneau D et al (2017) A temperate rocky super-Earth transiting a nearby cool star. Nature 544:333–336CrossRefGoogle Scholar
  35. Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting circumbinary planet. Science 333:1602–1606CrossRefGoogle Scholar
  36. Dyson FJ (1960) Search for artificial stellar sources of infrared radiation. Science 131:1667–1668CrossRefGoogle Scholar
  37. Edson AR, Kasting JF, Pollard D et al (2012) The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets. Astrobiology 12:562–571CrossRefGoogle Scholar
  38. Ernst OP, Lodowski DT, Elstner M et al (2004) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163CrossRefGoogle Scholar
  39. ESA (2013) How many space debris objects are currently in orbit? Presseveröffentlichung im Rahmen des Clean-Space-Konzepts. Zugegriffen: 15. Febr. 2019
  40. ESA (2018a) GAIA creates richest star map of our galaxy - and beyond. Pressemitteilung. Zugegriffen: 15. Febr. 2019
  41. ESA (2018b) ESA’s next science mission to focus on nature of Exoplanets. Pressemitteilung. Zugegriffen: 15. Febr. 2019
  42. ESO (2005) Confirmation of the first image of an extra-solar planet. The ESO Messenger 120:25Google Scholar
  43. ESO (2012) Many billions of rocky planets in the habitable zones around red dwarfs in the milky way. Pressemitteilung der ESO. Zugegriffen: 15. Febr. 2019
  44. ESO (2018a) Stunning exoplanet time-lapse. Pressemitteilung der ESO. Zugegriffen: 15. Febr. 2019
  45. ESO (2018b) ESO’s VLT Working as 16-metre Telescope for First Time – ESPRESSO instrument achieves first light with all four Unit Telescopes. Presseveröffentlichung. Zugegriffen: 15. Febr. 2019
  46. Etiope G, Sherwoold Lollar BS (2013) Abiotic methane on earth. Rev Geophys 51:276–299CrossRefGoogle Scholar
  47. Ettwig KF, Butler MK, Le Paslier D et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548CrossRefGoogle Scholar
  48. Exoplanet Database (2019) Catalog of the extrasolar planets encyclopaedia. Francoise Roques Observatoire de Paris & Jean Schneider Observatoire de Paris. Zugegriffen: 10. Febr. 2019
  49. Falkowski P (2012) Ocean science: the power of plankton. Nat 483:S17–S20CrossRefGoogle Scholar
  50. Fenchel T, Finlay BJ (1990) Oxygen toxicity, respiration and behavioural responses to oxygen in free-living anaerobic ciliates. Microbiology 136:1953–1959Google Scholar
  51. Feulner G (2012) The faint young Sun problem. Rev Geophys 50:RG2006Google Scholar
  52. Flandro G (1966) Fast reconnaissance missions to the outer solar system using energy derived from the gravitational field of Jupiter. Astronautica Acta 12(4):329–337Google Scholar
  53. Flombaum P, Gallegos JL, Gordillo RA et al (2013) Present and future distribution of the marine Cyanobacteria Prochlorococcus and Synechococcus. PNAS 110(24):9824–9829CrossRefGoogle Scholar
  54. Foley BJ, Smye AJ (2018) Carbon cycling and habitability on Earth-sized stagnant lid planets. Astrobiology 18:873–896CrossRefGoogle Scholar
  55. Formisano V, Atreya S, Encrenaz T et al (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761CrossRefGoogle Scholar
  56. Galli A, Losch A (2019) Beyond planetary protection: What is planetary sustainability and what are its implications for space research? Life Sciences in Space Research. In press, corrected proof.
  57. Gebauer S, Grenfell JL, Lehmann R, Rauer H (2018) Evolution of Earth-like planetary atmospheres around M dwarf stars: assessing the atmospheres and biospheres with a coupled atmosphere biogeochemical model. Astrobiology 18:856–872CrossRefGoogle Scholar
  58. Ghodbane A, Saad M, Hobeika C et al (2016) Design of a tolerant flight control system in response to multiple actuator control signal faults induced by cosmic rays. IEEE Trans Aerosp Electron Syst 52:681–697CrossRefGoogle Scholar
  59. Gillon M, Triaud AHMJ, Demory B-O et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star Trappist-1. Nature 542:456–460CrossRefGoogle Scholar
  60. Ginski C, Benisty M, Van Holstein RG et al (2018) First direct detection of a polarized companion outside of a resolved circumbinary disk around CS Cha. Astron Astrophys 616:A79CrossRefGoogle Scholar
  61. Giuranna M, Viscardy S, Daerden F et al (2019) Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nat Geosci 12:326–332CrossRefGoogle Scholar
  62. Glassman T, Lo AS, Arenberg J et al (2009) Starshade scaling relations. Proc. SPIE 7440, Techniques and Instrumentation for Detection of Exoplanets IV, 744013Google Scholar
  63. Grenfell Jl, Stracke B, von Paris P et al (2007) The response of atmospheric chemistry on earthlike planets around F, G and K Stars to small variations in orbital distance. Planet Space Sci 55:661–671CrossRefGoogle Scholar
  64. Grimm SL, Demory B-O, Gillon M et al (2018) The nature of the TRAPPIST-1 exoplanets. Astron Astrophys 613:A68CrossRefGoogle Scholar
  65. Harman CE, Schwieterman EW, Schottelkotte JC et al (2015) Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life? Astrophys J 812:137CrossRefGoogle Scholar
  66. Haqq-Misra JD, Domagal-Goldman D, Kasting PJ, Kasting JF (2009) A revised, Hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137CrossRefGoogle Scholar
  67. Heller R, Hippke M (2017) Deceleration of high-velocity interstellar photon sails into bound orbits at α Centauri. Astrophys J Lett 835(2):L32CrossRefGoogle Scholar
  68. Heller R, Rodenbeck K, Bruno G (2019) An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of Kepler-1625. Astron Astrophys 624:A95CrossRefGoogle Scholar
  69. Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327CrossRefGoogle Scholar
  70. Howard WS, Tilley MA, Corbett H et al (2018) The first naked-eye superflare detected from Proxima Centauri. Astrophys J 860:L30CrossRefGoogle Scholar
  71. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776CrossRefGoogle Scholar
  72. Jansen J, Hill NA, Dunstan PK et al (2018) Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nature Ecology & Evolution 2:71–80CrossRefGoogle Scholar
  73. Kane SR, Hill ML, Kasting JF et al (2016) A catalog of kepler habitable zone exoplanet candidates. Astrophys J 830:1CrossRefGoogle Scholar
  74. Keppler M, Benisty M, Müller A et al (2018) Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 *. Astron Astrophys 617:A44CrossRefGoogle Scholar
  75. Kervella P, Mignard F, Merand A, Thevenin F (2016) Close stellar conjuctions of α Centauri A and B until 2050 – An mK = 7.8 star may enter the Einstein ring of αCen A in 2028. Astron Astrophys 594:A107CrossRefGoogle Scholar
  76. Kiang NY, Siefert J, Govindjee, Blankenship RE (2007a) Spectral signatures of photosynthesis I. Review of earth organisms. Astrobiology 7:222–251Google Scholar
  77. Kiang NY, Segura A, Tinetti G et al (2007b) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7:252–274Google Scholar
  78. Kirkpatrick JD, Schneider A, Fajardo-Acosta S et al (2014) The AllWISE motion survey and the quest for cold subdwarfs. Astrophys J 783:122CrossRefGoogle Scholar
  79. Knak Jensen SJ, Skibsted J, Jakobsen HJ et al (2014) A sink for methane on Mars? The answer is blowing in the wind. Icarus 236:24–27CrossRefGoogle Scholar
  80. Knipp DJ, Ramsay AC, Beard ED et al (2016) The May 1967 great storm and radio disruption event: extreme space weather and extraordinary responses. Space Weather 14:614–633CrossRefGoogle Scholar
  81. Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon – Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–365CrossRefGoogle Scholar
  82. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102(32):11131–11136CrossRefGoogle Scholar
  83. Korablev OI, Montmessin F, Fedorova AA et al (2015) ACS experiment for atmospheric studies on „ExoMars-2016“ orbiter. Sol Syst Res 49:529–537CrossRefGoogle Scholar
  84. Kosheleva O, Kreinovich V (2016) Why most bright stars are binary but most dim stars are single: a simple qualitative explanation. Departmental Technical Report (CS):12–2016. University of Texas at El Paso, Department of Computer ScienceGoogle Scholar
  85. Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67CrossRefGoogle Scholar
  86. Kump LR, Brantley SL, Arthur MA (2000) Chemical weathering, atmospheric CO2, and climate. Annu Rev Earth Planet Sci 28:611–667CrossRefGoogle Scholar
  87. Lada CJ (2006) Stellar multiplicity and the IMF: Most stars are single. Astrophys J Lett 640:L63–L66CrossRefGoogle Scholar
  88. Landis GA (1998) The fermi paradox: an approach based on percolation theory. J Br Interplanetary Soc 51:163–166Google Scholar
  89. Lauretta DS, Balram-Knutson SS, Bennett CA et al (2018) OSIRIS-REx encounters Earth: signatures of a habitable world. 49th Lunar and Planetary Science Conference 2018, LPI Contribution Number 2083Google Scholar
  90. Lederberg J (1960) Exobiology: approaches to life beyond the Earth. Sci 132:393–400CrossRefGoogle Scholar
  91. Lingam M, Loeb A (2017) Fast radio bursts from extragalactic light sails. Astrophys J Lett 837(2):L23CrossRefGoogle Scholar
  92. Lingam M, Loeb A (2018) Implications of tides for life on exoplanets. Astrobiology 18:967–982CrossRefGoogle Scholar
  93. Lovis C, Snellen I, Mouillet D et al (2016) Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. Astron Astrophys 599:A16CrossRefGoogle Scholar
  94. Lowery CM, Bralower TJ, Owens JD (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558:288–291CrossRefGoogle Scholar
  95. Lubin P (2016) A roadmap to interstellar flight. NASA-internes Paper, University of California, Santa Barbara. Zugegriffen: 15. Febr. 2019
  96. Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwars. Astrobiology 15:119–143CrossRefGoogle Scholar
  97. Luhman KL (2014) Discovery of a ~250 K Brown dwarf at 2 pc from the Sun. Astrophys J Lett 786:L18CrossRefGoogle Scholar
  98. Luo G, Ono S, Beukes NJ et al (2016) Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv 2(5):e1600134CrossRefGoogle Scholar
  99. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315CrossRefGoogle Scholar
  100. MacGregor MA, Weinberger AJ, Wilner DJ et al (2018) Detection of a millimeter flare from Proxima Centauri. Astrophys J Lett 855:L2CrossRefGoogle Scholar
  101. MacLennan S, Park Y, Swanson-Hysell N et al (2018) The arc of the snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Strutian glaciation. Geology 46(6):539–542CrossRefGoogle Scholar
  102. Madden JH, Kaltenegger L (2018) A catalog of spectra, albedos, and colors of solar system bodies for exoplanet comparison. Astrobiology 18:1559–1573CrossRefGoogle Scholar
  103. Marosvölgyi MA, Van Gorkom HJ (2010) Cost and color of photosynthesis. Photosynth Res 103:105–109CrossRefGoogle Scholar
  104. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359CrossRefGoogle Scholar
  105. Meadows VS (2008) Planetary environmental signatures for habitability and life. In: von Mason JW (Hrsg) Exoplanets. Springer, Heidelberg, S 259–284Google Scholar
  106. Meadows VS (2017) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17:1022–1052CrossRefGoogle Scholar
  107. Meadows VS, Reinhard CT, Arney GN et al (2018) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18:630–662CrossRefGoogle Scholar
  108. Mennesson B, Gaudi S, Seager S et al (2016) The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements. In: von MacEwen HA, Fazio GG, Lystrup M et al (Hrsg) Proceedings SPIE 9904, space telescopes and instrumentation 2016: optical, infrared, and millimeter wave. International Society for Optics and Photonics, Edinburgh, 99040LGoogle Scholar
  109. Metzger BD, Shen KJ, Stone N (2017) Secular dimming of KIC 8462852 following its consumption of a planet. Mon Not R Astron Soc 468:4399–4407CrossRefGoogle Scholar
  110. Miles B, Shkolnik E (2017) HAZMAT II. Ultraviolet variability of low-mass stars in the galex archive. XI. Astron J 154:67CrossRefGoogle Scholar
  111. Milner YBB (2016) Breakthrough Starshot. Vortrag des Gründers und Kooperationspartner im One World Trade Center, New York. Zugegriffen: 15. Febr. 2019
  112. Minton D, Malhotra R (2007) Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle. Astrophys J 660:1700CrossRefGoogle Scholar
  113. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181CrossRefGoogle Scholar
  114. Mroz P, Udalski A, Skowron J et al (2017) No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548:183–186CrossRefGoogle Scholar
  115. Mumma MJ, Villanueva GL, Novak RE et al (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045CrossRefGoogle Scholar
  116. Nair US, Wu Y, Kala J et al (2011) The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J Geophys Res: Atmos 116:12Google Scholar
  117. NASA (2013) NASA spacecraft embarks on historic journey into interstellar space. Presseveröffentlichung. Zugegriffen: 15. Febr. 2019.
  118. NASA (2016) NASA’s Kepler mission announces largest collection of planets ever discovered. Pressemitteilung der NASA. Zugegriffen: 15. Febr. 2019
  119. NASA (2018a) Voyager Mission Status. Zugegriffen: 15. Febr. 2019
  120. NASA (2018b) NASA’s webb observatory requires more time for testing and evaluation; New Launch Window Under Review. Pressemitteilung. Zugegriffen: 15. Febr. 2019
  121. NASA (2018c) LUVOIR – Large UV/Optical/IR Surveyor. Missions Home-Page Goddard Space Flight Center. Zugegriffen: 15. Febr. 2019
  122. NASA (2018d) NASA Is taking a new look at searching for life beyond Earth. Pressemitteilung. Zugegriffen: 15. Febr. 2019
  123. NASA (2019a) NASA’s TESS Rounds Up its First Planets, Snares Far-flung Supernovae. NASA Pressemitteilung. Zugegriffen: 15. Febr. 2019
  124. NASA (2019b) NASA’s TESS discovers its first Earth-size planet. NASA Pressemitteilung. Zugegriffen: 10. Mai 2019
  125. Neveu M, Hays LE, Voytek MA et al (2018) The ladder of life detection. Astrobiology 18:1375–1402CrossRefGoogle Scholar
  126. Nikolov N, Sing DK, Forntey JJ et al (2018) An absolute sodium abundance for a cloud-free ‘hot Saturn’ exoplanet. Nature 557:526–529CrossRefGoogle Scholar
  127. Nisbet RER, Fisher R, Nimmo RH et al (2009) Emission of methane from plants. Proc Royal Soc B Biol Sci 276:1347–1354CrossRefGoogle Scholar
  128. Nutman AP, Bennett VC, Friend CRL et al (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538CrossRefGoogle Scholar
  129. O’Malley-James JT, Kaltenegger L (2017) UV surface habitability of the TRAPPIST-1 system. Mon Not Royal Astron Soc: Lett 469:L26–L30CrossRefGoogle Scholar
  130. O’Malley-James JT, Kaltenegger L (2018) The vegetation red edge biosignature through time on Earth and exoplanets. Astrobiology 18:1123–1136CrossRefGoogle Scholar
  131. Olson SL, Schwieterman EW, Reinhard CT et al (2018) Atmospheric seasonality as an exoplanet biosignature. Astrophys J Lett 858:L14CrossRefGoogle Scholar
  132. Pangala SR, Enrich-Prast A, Basso LS et al (2017) Large emissions from floodplain trees close the Amazon methane budget. Nature 552:230–234 f.CrossRefGoogle Scholar
  133. Paris A, Davies E (2015) Hydrogen clouds from comets 266/P Christensen and P/2008 Y2 (Gibbs) are candidates for the source of the 1977 „WOW“ signal. J Wash Acad Sci 101(4):25–32Google Scholar
  134. Petigura EA, Howard AW, Marcy GW (2013) Prevelance of Earth-size planets orbiting Sun-like stars. PNAS 110(48):19273–19278CrossRefGoogle Scholar
  135. Planavsky NJ, Asael D, Hofmann A et al (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286CrossRefGoogle Scholar
  136. Reinhard CT, Planavsky NJ, Olson SL et al (2016) Earth’s oxygen cycle and the evolution of animal life. PNAS 113:8933–8938CrossRefGoogle Scholar
  137. Reinhard CT, Olson SL, Schwieterman EW, Lyons TW (2017) False negatives for remote life detection on ocean-bearing planets: Lessons from the early Earth. Astrobiology 17:287–297CrossRefGoogle Scholar
  138. Ribas I, Tuomi M, Reiners A et al (2018) A candidate super-Earth planet orbiting near the snow line of Barnard’s star. Nature 563:365–368CrossRefGoogle Scholar
  139. Ricker GR, Winn JN, Vanderspek R et al (2014) Transiting exoplanet survey satellite. J Astron Telescopes, Instrum, Syst 1(1):014003CrossRefGoogle Scholar
  140. Robertson P, Mahadevan S, Endl M, Roy A (2014) Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444CrossRefGoogle Scholar
  141. Robinson TD, Ennico K, Meadows VS et al (2014) Detecting oceans on extrasolar planets using the glint effect. Astrophys J 721:L67–L71CrossRefGoogle Scholar
  142. Roettenbacher RM, Kane SR (2017) The stellar activity of TRAPPIST-1 and consequences for the planetary atmospheres. Astrophys J 851:77CrossRefGoogle Scholar
  143. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747CrossRefGoogle Scholar
  144. Sagan C, Mullen G (1972) Earth and Mars – evolution of atmospheres and surface temperatures. Science 177:52–56CrossRefGoogle Scholar
  145. Sagan C, Thompson WR, Carlson R et al (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721CrossRefGoogle Scholar
  146. Sagan C (1997) The demon-haunted world: science as a candle in the dark, 1. Aufl. Ballantine, New York, S 213Google Scholar
  147. Saito RK, Minniti D, Ivanov VD et al (2018) VVV-WIT-07: another Boyajian’s star or a Mamajek’s object? Mon Not R Astron Soc 482:5000–5006CrossRefGoogle Scholar
  148. Scambos TA, Campbell GG, Pope A et al (2018) Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: the coldest places on Earth. Geophys Res Lett 45:6124–6133CrossRefGoogle Scholar
  149. Schaefer BE (2016) KIC 8462852 faded at an average rate of 0.164+-0.013 magnitudes per century from 1890 to 1989. Astrophys J Lett 822:L34Google Scholar
  150. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91CrossRefGoogle Scholar
  151. Schneider J, Dedieu C, Le Sidaner P et al (2011) Defining and cataloging exoplanets: the database. Astron Astrophys 532:A79CrossRefGoogle Scholar
  152. Schopf JW, Kitajima K, Spicuzza MJ et al (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbin isotope compositions. PNAS 115(1):53–58CrossRefGoogle Scholar
  153. Schulze-Makuch D, Mendez A, Fairen AG et al (2011) A two-tired approach to assessing the habitability of exoplanets. Astrobiology 11:1041–1052CrossRefGoogle Scholar
  154. Schulze-Makuch D, Crawford IA (2018) Was there an early habitability window for Earth’s moon? Astrobiology 18:985–988CrossRefGoogle Scholar
  155. Schwieterman EW, Kiang NY, Parenteau MN et al (2018) Exoplanet biosignatures: a review on remotely detectable signs of life. Astrobiology 18:663–708CrossRefGoogle Scholar
  156. Seager S, Schrenk M, Bains W (2012) An astrophysical view of Earth-based metabolic biosignature gases. Astrobiology 12:61–82CrossRefGoogle Scholar
  157. Selsis F, Kasting JF, Levrard B et al (2007) Habitable planets around the star Gliese 581? Astron Astrophys 476:1373–1387CrossRefGoogle Scholar
  158. Shallue CJ, Vanderburg A (2017) Identifying exoplanets with deep learning: a five planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. Astron J 155:94CrossRefGoogle Scholar
  159. Sheikh MA, Weaver RL, Dahmen KA (2016) Avalanche statistics identify intrinsic stellar processes near criticality in KIC 8462852. Phys Rev Lett 117:261101CrossRefGoogle Scholar
  160. Sheppard SS, Williams GV, Tholen DJ et al (2018) New Jupiter satellites and moon-moon collisions. Res Notes AAS 2:155CrossRefGoogle Scholar
  161. Shepard S, Trujillo C, Tholen D, Kaib N (2018) A new high perihelion inner oort cloud object. arXiv:1810.00013
  162. Shkolnik EL, Barman TS (2014) HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars. Astron J 148:64CrossRefGoogle Scholar
  163. Shostak S (2015) Searching for clever life. Astrobiology 15:949–950CrossRefGoogle Scholar
  164. Sigurdsson S, Richer HB, Hansen BM et al (2003) A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301:193–196CrossRefGoogle Scholar
  165. Southworth J, Mancini L, Madhusudhan et al (2017) Detection of the atmosphere of the 1.6 M exoplanet GJ 1132 b. Astron J 153(4):191Google Scholar
  166. Spake JJ, Sing DK, Evans TM et al (2018) Helium in the eroding atmosphere of an exoplanet. Nat 557:68–70CrossRefGoogle Scholar
  167. Sparks WB, DasSarma S, Reid IN (2007) Evolutionary competition between primitive photosynthetic systems: existence of an early purple Earth? AAS/AAPT Joint Meeting, American Astronomical Society Meeting 209, id.06.05.BAAS38:901Google Scholar
  168. Stern SA (2017) An answer to fermi’s paradox in the prevelance of ocean worlds? American Astronomical Society, DPS meeting 49, id.202.03Google Scholar
  169. Stevenson KB, Lewis NK, Bean JL et al (2016) Transiting exoplanet studies and community targets for JWST’s early release science program. Publ Astron Soc Pac 128:094401CrossRefGoogle Scholar
  170. Strigari LE, Barnabe M, Marshall PJ, Blandford RD (2012) Nomads of the galaxy. Mon Not R Astron Soc 423:1856–1865CrossRefGoogle Scholar
  171. Suissa G, Kipping D (2018) Trappist-1e Has a large iron core. Res Not AAS 2(2):31CrossRefGoogle Scholar
  172. Sumi T, Kamiya K, Bennett DP et al (2011) Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473:349–352CrossRefGoogle Scholar
  173. Tabataba-Vakili F, Grenfell JL, Grießmeier J-M, Rauer H (2016) Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. Astron Astrophys 585:A96CrossRefGoogle Scholar
  174. Tarter JC, Backus PR, Mancinelli RL et al (2007) A reappraisal of the habitability of planets around M dwarf stars. Astrobiology 7:30–65CrossRefGoogle Scholar
  175. Tashiro T, Ishida A, Hori M et al (2017) Early trace of life from 3,95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518CrossRefGoogle Scholar
  176. Teachey A, Kipping DM (2018) Evidence for a large exomoon orbiting Kepler-1625b. Sci Adv 4:eaav1784Google Scholar
  177. Tilley MA, Segura A, Meadows V et al (2019) Modeling repeated M dwarf flaring at an Earth-like planet in the habitable zone: atmospheric effects for an unmagnetized planet. Astrobiology 19:64–86CrossRefGoogle Scholar
  178. Tollefson J (2018) US environmental group wins millions to develop methane-monitoring satellite. Nature 556:283CrossRefGoogle Scholar
  179. Tsuda Y, Mori O, Funase R et al (2011) Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut 69:833–840CrossRefGoogle Scholar
  180. Turnbull MC, Glassman T, Roberge A et al (2012) The search for habitable worlds. 1. The viability of a starshade mission. PASP 124:418CrossRefGoogle Scholar
  181. Tyrrell T, Merico A (2004) Emiliana hexleyi: bloom observations and the conditions that induce them. In: Thierstein HR, Young JR (Hrsg) Coccolithophores – from molecular processes to global impact. Springer, Heidelberg, S 75–97Google Scholar
  182. Udry S, Bonfils X, Delfosse X (2007) The HARPS search for southern extra-solar planets XI. Super-Earths (5 and 8 M) in a 3-planet system. Astron Astrophys 469(3):L43–L47Google Scholar
  183. Vago J, Gianfiglio G, Haldemann A et al (2009) ExoMars – ESA’s Mission to search for signs of life. Planetary science decadal survey: Mars Panel Meeting, 10. September 2009, Arizona State University, Tempe (USA)Google Scholar
  184. Valley JW, Cavosie AJ, Ushikubo T et al (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223CrossRefGoogle Scholar
  185. Vandaele AC, Neefs E, Drummond R et al (2015) Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet Space Sci 119:233–249CrossRefGoogle Scholar
  186. Vandaele AC (2018) Impact of the 2018 global dust storm on Mars atmosphere composition as observed by NOMAD on ExoMars Trace Gas Orbiter. Fall Meeting of the American Geophysical Union 2018.
  187. Volk K, Malhotra R (2017) The curiously warped mean plane of the Kuiper Belt. Astrophys J 154:62Google Scholar
  188. Walker SI, Bains W, Cronin L et al (2018) Exoplanet biosignatures: future directions. Astrobiology 18:779–824CrossRefGoogle Scholar
  189. Webster CR, Mahaffy PR, Atreya SK et al (2015) Mars methane detection and variability at Gale crater. Science 347:415–417CrossRefGoogle Scholar
  190. Webster CR, Mahaffy PR, Atreya SK et al (2018) Background leves of methane in Mars’ atmosphere show strong seasonal variations. Science 360:1093–1096CrossRefGoogle Scholar
  191. Welch B, Gauci V, Sayer EJ (2019) Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition. Glob Change Biol 25:361–372CrossRefGoogle Scholar
  192. Wells R, Poppenhaeger K, Watson CA, Heller R (2018) Transit visibility zones of the Solar system planets. Mon Not R Astron Soc 473:345–354CrossRefGoogle Scholar
  193. Witze A (2018) The quest to conquer the space junk problem. Nature 561:24–26CrossRefGoogle Scholar
  194. Wordsworth R (2015) Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys J 806(2):180 10.1088/0004-637X/806/2/180CrossRefGoogle Scholar
  195. Ziegler JF (1998) Terrestrial cosmic ray intensities. IBM J Res Dev 42:117–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Aleksandar Janjic
    • 1
  1. 1.Technische Universität MünchenFreisingDeutschland

Personalised recommendations