Advertisement

Prüfung der Syntheseleistung und metabolischen Kapazität

  • Jürgen SteinEmail author
  • Barbara Braden
Chapter

Zusammenfassung

Eine akute oder chronische Schädigung bzw. der Untergang funktionsfähiger Leberzellen hat Störungen der Syntheseleistung (z. B. Proteinsynthese) sowie die Entgiftung und Ausscheidung endogener Stoffwechselprodukte und exogen zugeführter Xenobiotika zur Folge.

Literatur

  1. Adolf J, Martin WG, Müller DF et al (1992) The effect of acute cellular rejection on liver functionn following orthotopic liver transplantation. Quantitative function studies with 14C-aminopyrine breath test. Dtsch Med Wochenschr 117:1823–1828CrossRefGoogle Scholar
  2. Arrigoni A, Gindo T, Amino G (1994) Monoethylglicinexylidine test: a prognostic indicator of survival in cirrhosis. Hepatology 20:383–387CrossRefGoogle Scholar
  3. Bonfrate L, Grattagliano I, Palasciano G, Portincasa P (2015) Dynamic carbon 13 breath tests for the study of liver function and gastric emptying. Gastroenterol Rep 3:12–21CrossRefGoogle Scholar
  4. Braden B, Dominik F, Sarrazin U, Zeuzem S, Dietrich CF, Caspary WF, Sarrazin C (2005) 13C-Methacetin breath test as liver function test in patients with chronic hepatitis C virus infection. Aliment Pharmacol Ther 21:179–185CrossRefGoogle Scholar
  5. Cheng WSC, Murphy TL, Smith MT (1990) Dose-dependent pharmacokinectics of caffeine in humans: relevance as a test of quantitative liver function. Clin Pharmacol Ther 4:47–53Google Scholar
  6. Dufour DR et al (2000a) Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin Chem 46:2027–2049Google Scholar
  7. Dufour DR et al (2000b) Diagnosis and monitoring of hepatic injury. II. Recommendations for use of laboratory tests in screening, diagnosis, and monitoring. Clin Chem 46:2050–2068Google Scholar
  8. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ: Can Med Assoc J 172:367–379CrossRefGoogle Scholar
  9. Gorowska-Kowolik K, Chobot A, Kwiecien J (2017) 13C Methacetin breath test for assessment of microsomal liver function: methodology and clinical application. Gastroenterol Res Prac:7397840Google Scholar
  10. Grattagliano I et al (2015) Exploring liver mitochondrial function by (1)(3)C-stable isotope breath tests: implications in clinical biochemistry. Methods Mol Biol 1241:137–152CrossRefGoogle Scholar
  11. Köttgen E, Tauber R (1995) Klinisch-chemische Untersuchungen. In: Gerok W, Blum HE (Hrsg) Hepatologie. Urban & Schwarzenberg, München, S 125–145Google Scholar
  12. Meyer-Wyss B, Renner E, Luo H, Scholer A (1993) Assessment of lidocaine metabolite formation in comparison with other quantitative liver function tests. J Hepatol 19:133–136CrossRefGoogle Scholar
  13. Nakatani T, Spolter L, Kobayashi K (1995) Arterial ketone body ratio as a parameter of hepatic mitochondrial redox state during and after hemorrhagic shock. World J Surg 19:592–596CrossRefGoogle Scholar
  14. Pijls KE et al (2014) Critical appraisal of 13C breath tests for microsomal liver function: aminopyrine revisited. Liver International: official journal of the International Association for the Study of the Liver 34:487–494CrossRefGoogle Scholar
  15. Saadeh S1, Behrens PW, Parsi MA, Carey WD, Connor JT, Grealis M, Barnes DS (2003) The utility of the 13C-galactose breath test as a measure of liver function. Aliment Pharmacol Ther 18:995–1002CrossRefGoogle Scholar
  16. Schneider A, Caspary WF, Stein J (2004) Atemtests in der Leberfunktionsdiagnostik. Z Gastroenterol 42:269–275CrossRefGoogle Scholar
  17. Spahr L, Negro F, Leandro G et al (2003) Impaired hepatic mitochondrial oxidation using the 13C-methionine breath test in patients with macrovesicular steatosis and patients with cirrhosis. Med Sci Monit 9:6–11Google Scholar
  18. Stravitz RT, Ilan Y (2017) Potential use of metabolic breath tests to assess liver disease and prognosis: has the time arrived for routine use in the clinic? Liver international: official journal of the International Association for the Study of the Liver 37:328–336CrossRefGoogle Scholar
  19. Totsuka E, Itoh S, Shindo K, Suzuki K, Matsuura K, Nozaki T, Takiguchi M, Narumi S, Hakamada K, Endoh M, Sasaki M (2001) Usefulness of redox tolerance test in evaluating fatty liver. Hepatogastroenterology 48:184–7Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Gastroenterologie/ErnährungsmedizinFEBG, AGAF DGD Kliniken FrankfurtFrankfurt/MainDeutschland
  2. 2.Translational Gastroenterology UnitOxford University Hospitals NHS Foundation TrustOxfordGroßbritannien

Personalised recommendations