Advertisement

Was wirkt und was nicht?

  • Andreas G. FrankeEmail author
Chapter

Zusammenfassung

OTC-Drugs (zum Beispiel Koffein, Ginkgo biloba), verschreibungspflichtige Medikamente (zum Beispiel Ritalin®, Attentin®, Adderall®) und illegale Drogen (zum Beispiel Speed, Crystal Meth) haben sehr unterschiedliche Einflüsse auf die geistige Leistungsfähigkeit. Tendenziell sind die Wirkungen von koffeinhaltigen Mitteln, Amphetaminen und Modafinil am ausgeprägtesten auf kognitive Domänen wie Vigilanz, Aufmerksamkeit, Konzentration und Gedächtnisleistungen. Dabei ist die Wirkung von Koffein geringer als die von Modafinil; Amphetamine sind am wirkungsvollsten. Die Wirkung der Neuroenhancer ist umso ausgeprägter, je beeinträchtigter – im Sinne von müde – die Einnehmenden im Vorfeld sind.

Referenzen und Literatur zum Weiterlesen

Allgemein

  1. 1.
    Benkert O & Hippius H (2019) Kompendium der Psychiatrischen Pharmakotherapie. (12. Aufl.) Springer-VerlagGoogle Scholar
  2. 2.
    de Jongh R et al (2008) Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neurosci Biobehav Rev 32:760–776CrossRefGoogle Scholar
  3. 3.
    Franke AG et al (2014) Substances used and prevalence rates of pharmacological cognitive enhancement among healthy subjects. Eur Arch of Psychiatry Clin Neurosci 264(Suppl 1):83–90CrossRefGoogle Scholar
  4. 4.
    Franke AG, Lieb K (2009) Missbrauch von Psychopharmaka zum „Cognitive Enhancement“. Mit Hirndoping zu intellektuellen Spitzenleistungen? InFo Neurologie Psychiatrie 11(7–8):42–51Google Scholar
  5. 5.
    Mehlman MJ (2004) Cognition-enhancing drugs. The Milbank Q 82(3):483–506CrossRefGoogle Scholar

Koffein

  1. 6.
    Aggarwal R et al (2011) Effect of caffeine and taurine on simulated laparoscopy performed following sleep deprivation. Br J Surg 98(11):1666–1672CrossRefGoogle Scholar
  2. 7.
    Alford C et al (2001) The effects of red bull energy drink on human performance and mood. Amino Acids 21:139–150CrossRefGoogle Scholar
  3. 8.
    Fisone G et al (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61:857–872CrossRefGoogle Scholar
  4. 9.
    Franke AG et al (2017) Methylphenidate, modafinil, and caffeine for cognitive enhancement in chess: a double-blind, randomised controlled trial. Eur Neuropsychopharmacol 27(3):248–260CrossRefGoogle Scholar
  5. 10.
    Ishak WW et al (2012) Energy drinks: psychological effects and impact onwell-being and quality of life – a literature review. Innovations in Clin Neurosci 9:25–34Google Scholar
  6. 11.
    Ker K et al (2010) Caffeine for the prevention of injuries and errors in shift workers. Cochrane Database Syst Rev 5:CD008508Google Scholar
  7. 12.
    Killgore WD et al (2008) Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. J Sleep Res 17:309–321CrossRefGoogle Scholar
  8. 13.
    Killgore WD et al (2009) Sustaining executive functions during sleep deprivation: A comparison of caffeine, dextroamphetamine, and modafinil. Sleep 32:205–216CrossRefGoogle Scholar
  9. 14.
    Lin FJ et al (2010) Effect of taurine and caffeine on sleepwake activity in Drosophila melanogaster. Nat and Sci of Sleep 2:221–231CrossRefGoogle Scholar
  10. 15.
    Miller KE (2008) Wired: energy drinks, jock identity, masculine norms, and risk taking. J Am Coll Health 56:481–489CrossRefGoogle Scholar
  11. 16.
    Nehlig A et al (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17:139–170CrossRefGoogle Scholar
  12. 17.
    Nestle M (2000) Soft drink „Pouring Rights“: marketing empty calories to children. Pub Health Rep 115(4):308–319CrossRefGoogle Scholar
  13. 18.
    Preedy V (2015) Coffee in health and disease prevention, 1. Aufl. Elsevier, AmsterdamGoogle Scholar
  14. 19.
    Wesensten NJ (2014) Legitimacy of concerns about caffeine and energy drink consumption. Nutr Rev 72(Suppl. 1):78–86CrossRefGoogle Scholar

Ginkgo biloba

  1. 20.
    Birks J, Grimley Evans J (2009) Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Systematic Reviews (1):CD003120Google Scholar
  2. 21.
    Burns NR et al (2006) Ginkgo biloba: no robust effect on cognitive abilities or mood in healthy young or older adults. Hum Psychopharmacol 21:27–37CrossRefGoogle Scholar
  3. 22.
    Franke AG et al (2014) Substances used and prevalence rates of pharmacological cognitive enhancement among healthy subjects. Eur Arch Psychiatry Clin Neurosci 264(Suppl 1):83–90CrossRefGoogle Scholar
  4. 23.
    Franke AG, Lieb K (2009) Missbrauch von Psychopharmaka zum „Cognitive Enhancement“. Mit Hirndoping zu intellektuellen Spitzenleistungen? InFo Neurol Psychiatr 11(7–8):42–51Google Scholar
  5. 24.
    Kennedy DO et al (2002) Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ginseng combination to healthy young adults. Physiol Behav 75:739–751CrossRefGoogle Scholar
  6. 25.
    Scholey AB (2002) Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: differential interactions with cognitive demand. Hum Psychopharmacol 17:35–44CrossRefGoogle Scholar
  7. 26.
    Solomon PR et al (2002) Ginkgo for memory enhancement: a randomized controlled trial. J Am Med Assoc 288:835–840CrossRefGoogle Scholar
  8. 27.
    Zhang HF et al (2016) An Overview of Systematic Reviews of Ginkgo biloba Extracts for Mild Cognitive Impairment and Dementia. Frontiers in Aging Neuroscience 8:276.  https://doi.org/10.3389/fnagi.2016.00276 eCollection 2016CrossRefGoogle Scholar

Antidementiva

  1. 28.
    de Jongh R et al. (2008) Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neuroscience & Biobehavioral Reviews 32:760–776Google Scholar
  2. 29.
    Franke AG, Lieb K (2009) Missbrauch von Psychopharmaka zum „Cognitive Enhancement“. Mit Hirndoping zu intellektuellen Spitzenleistungen? InFo Neurologie Psychiatrie 11(7–8):42–51Google Scholar
  3. 30.
    Franke AG et al. (2014) Substances used and prevalence rates of pharmacological Cognitive Enhancement among healthy subjects. European Archives of Psychiatry and Clinical Neurosciences 264 Suppl 1:83–90Google Scholar
  4. 31.
    Rammsayer TH (2001) Effects of pharmacologically induced changes in NMDA-receptor activity on long-term memory in humans. Learn & Mem 8:20–25CrossRefGoogle Scholar
  5. 32.
    Rammsayer TH (2001) Effects of pharmacologically induced changes in NMDA receptor activity on human timing and sensorimotor performance. Brain Res 1073–1074:407–416Google Scholar

Modafinil

  1. 33.
    Bagot KS, Kaminer Y (2014) Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction 109:547–557CrossRefGoogle Scholar
  2. 34.
    Blaeser-Kiel G (2006) Schichtarbeiter-Syndrom: Es rächt sich, die innere Uhr zu ignorieren. Deutsches Ärzteblatt 103(7):A-424Google Scholar
  3. 35.
    Franke AG et al. (2017) Methylphenidate, modafinil, and caffeine for Cognitive Enhancement in chess: A double-blind, randomised controlled trial. European Neuropsychopharmacology 27(3):248–260Google Scholar
  4. 36.
    Jongh R de et al. (2008) Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neuroscience & Biobehavioral Reviews 32:760–776Google Scholar
  5. 37.
    Killgore WD (2008) Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. Journal of Sleep Research 17:309–321Google Scholar
  6. 38.
    Killgore WD (2009) Sustaining executive functions during sleep deprivation: A comparison of caffeine, dextroamphetamine, and modafinil. Sleep 32:205–216Google Scholar
  7. 39.
    Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacol 33:1477–1502CrossRefGoogle Scholar
  8. 40.
    Sugden C et al (2012) Effect of pharmacological enhancement on the cognitive and clinical psychomotor performance of sleep-deprived doctors: a randomized controlled trial. Ann Surg 255(2):222–227CrossRefGoogle Scholar

Amphetamine

  1. 41.
    Bagot KS, Kaminer Y (2014) Efficacy of stimulants for Cognitive Enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction 109:547–557Google Scholar
  2. 42.
    Baumgärtner M et al (2015) Crystal Meth: Produzenten, Dealer, Ermittler. Ch. Links Verlag GmbH, BerlinGoogle Scholar
  3. 43.
    Daumann J, Gouzoulis-Mayfrank E (2015) Amphetamine, Ecstasy und Designerdrogen. Kohlhammer, StuttgartGoogle Scholar
  4. 44.
    de Jongh R et al. (2008) Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neuroscience & Biobehavioral Reviews 32:760–776Google Scholar
  5. 45.
    Franke AG et al. (2017) Methylphenidate, modafinil, and caffeine for Cognitive Enhancement in chess: A double-blind, randomised controlled trial. European Neuropsychopharmacology 27(3):248–260Google Scholar
  6. 46.
    Iversen L (2009) Speed, Ecstasy, Ritalin: Amphetamine-Theorie und Praxis. Huber, BernGoogle Scholar
  7. 47.
    Killgore WD (2008) Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. Journal of Sleep Research 17:309–321Google Scholar
  8. 48.
    Killgore WD (2009) Sustaining executive functions during sleep deprivation: A comparison of caffeine, dextroamphetamine, and modafinil. Sleep 32:205–216 Google Scholar
  9. 49.
    Neumann S et al (2016) Methamphetaminabhängigkeit in Deutschland. Eine selektive Übersicht über Epidemiologie, Phänomenologie und Therapie. Nervenheilkunde 35(11):742–747CrossRefGoogle Scholar
  10. 50.
    Rasmussen N (2011) Medical science and the military: the Allies’ use of amphetamine during World War II. J Interdiscip Hist 42(2):205–233CrossRefGoogle Scholar
  11. 51.
    Spencer RC et al (2012) Psychostimulants act within the prefrontal cortex to improve cognitive function. Biol Psychiatry 72:221–227CrossRefGoogle Scholar
  12. 52.
    Wesensten NJ et al (2005) Performance and alertness effects of caffeine, dextroamphetamine, and modafinil during sleep deprivation. J Sleep Res 14(3):255–266CrossRefGoogle Scholar

Antidepressiva

  1. 53.
    Elliott C (2003) Better than well: American medicine meets the American dream. WW Norton, New YorkGoogle Scholar
  2. 54.
    Hall W (2004) Feeling „better than well“. EMBO Rep 5(12):1105–1109CrossRefGoogle Scholar
  3. 55.
    Harmer CJ et al (2003) Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacol 28:148–152CrossRefGoogle Scholar
  4. 56.
    Harmer CJ et al (2004) Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry 161:1256–1263CrossRefGoogle Scholar
  5. 57.
    Knutson B et al (1998) Selective alteration of personality and social behavior by serotonergic intervention. Am J Psychiatry 155:333–339CrossRefGoogle Scholar
  6. 58.
    Kramer P (1993) Listening to prozac. Penguin, New YorkGoogle Scholar
  7. 59.
    Tse W, Bond A (2002) Serotonergic intervention affects both social dominance and affiliative behavior. Psychopharmacolo 161:373–379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Hochschule der Bundesagentur für ArbeitMannheimDeutschland

Personalised recommendations