Advertisement

Classification Methods in Colon Disease Information System

  • Anna KasperczukEmail author
  • Agnieszka Dardzinska
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11390)

Abstract

This paper presents the process of building a new logistic regression model, which aims to support the decision-making process in medical database. The developed logistic regression model, J48 classifier and Random Tree algorithm define the probability of the disease and indicates the statistically significant changes that affect the onset of the disease. In our work, we attempted to build a classifier that would classify patients undergoing ulcerative colitis and other conditions within the lower gastrointestinal tract. The value of probability can be treated as one of the feature in decision process of patient’s future treatment.

Keywords

Selection Classification Decision system Information system 

References

  1. 1.
    Bender, R., Grouven, U.: Logistic regression models used in medical research are poorly presented [Letter]. BMJ 313, 628 (1996)CrossRefGoogle Scholar
  2. 2.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)zbMATHGoogle Scholar
  3. 3.
    Cabena, P., Hadjinian, P., Stadler, R., Zanassi, A.: Discovering Data Mining: From Concept to Implementation. Prentice Hall, Upper Saddle River (1998)Google Scholar
  4. 4.
    Campillo, C.: Standardizing criteria for logistic regression models. Ann. Intern. Med. 119, 540–541 (1993)CrossRefGoogle Scholar
  5. 5.
    Cheng, J., Greiner, R.: Learning Bayesian belief network classifiers: algorithms and system. In: Stroulia, E., Matwin, S. (eds.) Advances in Artificial Intelligence, AI 2001. LNCS (LNAI), vol. 2056, pp. 141–151. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45153-6_14CrossRefGoogle Scholar
  6. 6.
    Chin, S.: The rise and fall of logistic regression. Aust. Epidemiol. 8(3), 7–10 (2001)Google Scholar
  7. 7.
    Dardzinska, A.: Action Rules Mining. SCI. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35650-6CrossRefzbMATHGoogle Scholar
  8. 8.
    Frawley, W., Piatetsky-Shapiro, G., Matheus, C.: Knowledge discovery in databases: an overview. Knowl. Discov. Databases 1–27 (1991)Google Scholar
  9. 9.
    Hall, G.H., Round, A.P.: Logistic regression: explanation and use. J. Roy. Coll. Phys. Lond. 28, 242–246 (1994)Google Scholar
  10. 10.
    Hand, D., Mannila, H., Smyth, P.: Eksploracja danych. Wydawnictwa Naukowo – Techniczne, Warszawa, pp. 35–61, 91–127, 181–201 (2005)Google Scholar
  11. 11.
    Harrell, F.: Regression Modeling Strategies with Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer-Verlag, New York (2001)zbMATHGoogle Scholar
  12. 12.
    Hosmer, D., Lemeshow, S.: Applied Logistic Regression. Wiley, New Jersey (2000)CrossRefGoogle Scholar
  13. 13.
    Jiang, H., Kulkarni, P.M., Mallinckrodt, C.H., Shurzinske, L., Molenberghs, G., Lipkovich, I.: To adjust or not to adjust for baseline when analyzing repeated binary responses? The case of complete data when treatment comparison at study end is of interest. Pharm. Stat. 14, 262–271 (2015)CrossRefGoogle Scholar
  14. 14.
    de Jong, P., Heller, G.Z.: Generalized Linear Models for Insurance Data. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  15. 15.
    Kasperczuk, A., Dardzinska, A.: Comparative evaluation of the different data mining techniques used for the medical database. Acta Mech. Autom. 10(3), 233–238 (2016)Google Scholar
  16. 16.
    Khan, K.S., Chien, P.F., Dwarakanath, L.S.: Logistic regression models in obstetrics and gynecology literature. Obstet. Gynecol. 93, 10014–10020 (2000)Google Scholar
  17. 17.
    Koronacki, J., Mielniczuk, J.: Statystyka, p. 206. WNT, Warszawa (2006)Google Scholar
  18. 18.
    Larose, D.T.: Odkrywanie wiedzy z danych. Wprowadzenie do eksploracji danych. Wydawnictwo Naukowe PWN, Warszawa (2013)Google Scholar
  19. 19.
    Levy, P.S., Stolte, K.: Statistical methods in public health and epidemiology: a look at the recent past and projections for the next decade. Stat. Methods Med. Res. 9, 41–55 (2000)CrossRefGoogle Scholar
  20. 20.
    Morzy T.: Eksploracja danych, pp. 10–125, 196–325. Wydawnictwo Naukowe PWN, Warszawa (2013)Google Scholar
  21. 21.
    Quinlan, J.R.: Introduction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  22. 22.
    Zhang, Z., Chen, K., Ni, H., et al.: Predictive value of lactate in unselected critically ill patients: an analysis using fractional polynomials. J. Thorac. Dis. 6, 995–1003 (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Division of Biocybernetics and Biomedical EngineeringBialystok University of TechnologyBialystokPoland

Personalised recommendations