Advertisement

ICLA 2019: Logic and Its Applications pp 6-17

# Propositional Modal Logic with Implicit Modal Quantification

• Anantha Padmanabha
• R. Ramanujam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11600)

## Abstract

Propositional term modal logic is interpreted over Kripke structures with unboundedly many accessibility relations and hence the syntax admits variables indexing modalities and quantification over them. This logic is undecidable, and we consider a variable-free propositional bi-modal logic with implicit quantification. Thus $$[\forall ]\alpha$$ asserts necessity over all accessibility relations and $$[\exists ]\alpha$$ is classical necessity over some accessibility relation. The logic is associated with a natural bisimulation relation over models and we show that the logic is exactly the bisimulation invariant fragment of a two sorted first order logic. The logic is easily seen to be decidable and admits a complete axiomatization of valid formulas. Moreover the decision procedure extends naturally to the ‘bundled fragment’ of full term modal logic.

## Keywords

Term modal logic Implicitly quantified modal logic Bisimulation invariance Bundled fragment

## Notes

### Acknowledgement

We thank Yanjing Wang for his insightful and extensive discussions on the theme of this paper. Also, we thank the anonymous reviewers for their comments that helped us improve the presentation and quality of the paper.

## References

1. 1.
Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002).
2. 2.
van Benthem, J., et al.: Frame correspondences in modal predicate logic. Proofs, categories and computations: essays in honor of Grigori Mints, pp. 1–14 (2010)Google Scholar
3. 3.
Blackburn, P.: Nominal tense logic. Notre Dame J. Form. Log. 34(1), 56–83 (1993).
4. 4.
Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001)
5. 5.
Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Programm. Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)
6. 6.
van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Dordrecht (2007).
7. 7.
Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. A Bradford Book, Cambridge (2004)
8. 8.
Fitting, M., Thalmann, L., Voronkov, A.: Term-modal logics. Stud. Logica 69(1), 133–169 (2001).
9. 9.
Gargov, G., Goranko, V.: Modal logic with names. J. Philos. Log. 22(6), 607–636 (1993).
10. 10.
Grove, A.J.: Naming and identity in epistemic logic Part II: a first-order logic for naming. Artif. Intell. 74(2), 311–350 (1995)
11. 11.
Grove, A.J., Halpern, J.Y.: Naming and identity in epistemic logics Part I: the propositional case. J. Log. Comput. 3(4), 345–378 (1993)
12. 12.
van der Hoek, W., Pauly, M.: 20 modal logic for games and information. In: Studies in Logic and Practical Reasoning, vol. 3, pp. 1077–1148. Elsevier (2007)Google Scholar
13. 13.
Hughes, M., Cresswell, G.: A New Introduction to Modal Logic. Routledge, London and New York (1996)
14. 14.
Khan, M.A., Banerjee, M., Rieke, R.: An update logic for information systems. Int. J. Approximate Reasoning 55(1), 436–456 (2014).
15. 15.
Kooi, B.: Dynamic term-modal logic. In: A Meeting of the Minds, pp. 173–186 (2007)Google Scholar
16. 16.
Orlandelli, E., Corsi, G.: Decidable term-modal logics. In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT -2017. LNCS (LNAI), vol. 10767, pp. 147–162. Springer, Cham (2018).
17. 17.
Padmanabha, A., Ramanujam, R.: The monodic fragment of propositional term modal logic. Stud. Logica 1–25 (2018).
18. 18.
Padmanabha, A., Ramanujam, R.: Propositional modal logic with implicit modal quantification. arXiv preprint arXiv:1811.09454 (2018)
19. 19.
Padmanabha, A., Ramanujam, R., Wang, Y.: Bundled fragments of first-order modal logic: (un)decidability. In: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, 11–13 December 2018, Ahmedabad, pp. 43:1–43:20 (2018).
20. 20.
Passy, S., Tinchev, T.: Quantifiers in combinatory PDL: completeness, definability, incompleteness. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 512–519. Springer, Heidelberg (1985).
21. 21.
Shtakser, G.: Propositional epistemic logics with quantification over agents of knowledge. Stud. Logica 106(2), 311–344 (2018)
22. 22.
Wang, Y.: A new modal framework for epistemic logic. In: Proceedings Sixteenth Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2017, Liverpool, 24–26 July 2017, pp. 515–534 (2017).
23. 23.
Wang, Y., Seligman, J.: When names are not commonly known: epistemic logic with assignments. In: Advances in Modal Logic, vol. 12, pp. 611–628. College Publications (2018)Google Scholar

## Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

## Authors and Affiliations

• Anantha Padmanabha
• 1
• R. Ramanujam
• 1
1. 1.Institute of Mathematical Sciences, HBNIChennaiIndia