Advertisement

Logics for Rough Concept Analysis

  • Giuseppe Greco
  • Peter Jipsen
  • Krishna Manoorkar
  • Alessandra Palmigiano
  • Apostolos TzimoulisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11600)

Abstract

Taking an algebraic perspective on the basic structures of Rough Concept Analysis as the starting point, in this paper we introduce some varieties of lattices expanded with normal modal operators which can be regarded as the natural rough algebra counterparts of certain subclasses of rough formal contexts, and introduce proper display calculi for the logics associated with these varieties which are sound, complete, conservative and with uniform cut elimination and subformula property. These calculi modularly extend the multi-type calculi for rough algebras to a ‘nondistributive’ (i.e. general lattice-based) setting.

Keywords

Rough set theory Formal Concept Analysis Modal logic Lattice-based logics Algebras for rough sets Proper display calculi 

Supplementary material

References

  1. 1.
    Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fundamenta Informaticae 28(3, 4), 211–221 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Categories: how I learned to stop worrying and love two sorts. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 145–164. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52921-8_10CrossRefzbMATHGoogle Scholar
  3. 3.
    Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Toward an epistemic-logical theory of categorization. In: Proceedings of the TARK 2017. EPTCS, vol. 251, pp. 167–186 (2017)Google Scholar
  4. 4.
    Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics. Annals of Pure and Applied Logic ArXiv:1603.08515
  5. 5.
    Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent calculi. In: Indrzejczak, A., et al. (eds.) Proceedings of the Trends in Logic XIII, pp. 81–93 (2014)Google Scholar
  6. 6.
    Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquisitive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52921-8_14CrossRefzbMATHGoogle Scholar
  7. 7.
    Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Logic Comput. 28(7), 1367–1442 (2018)MathSciNetGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-642-59830-2CrossRefzbMATHGoogle Scholar
  9. 9.
    Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 135–148. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40948-6_11CrossRefzbMATHGoogle Scholar
  10. 10.
    Greco, G., Liang, F., Manoorkar, K., Palmigiano, A.: Proper multi-type display calculi for rough algebras. arXiv preprint 1808.07278
  11. 11.
    Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus for semi De Morgan logic. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 199–215. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-55386-2_14CrossRefzbMATHGoogle Scholar
  12. 12.
    Greco, G., Liang, F., Palmigiano, A., Rivieccio, U.: Bilattice logic properly displayed. Fuzzy Sets Syst. (2018).  https://doi.org/10.1016/j.fss.2018.05.007
  13. 13.
    Greco, G., Palmigiano, A.: Linear logic properly displayed. arXiv preprint: 1611.04184
  14. 14.
    Greco, G., Palmigiano, A.: Lattice logic properly displayed. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 153–169. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-55386-2_11CrossRefzbMATHGoogle Scholar
  15. 15.
    Kent, R.E.: Rough concept analysis: a synthesis of rough sets and formal concept analysis. Fundamenta Informaticae 27(2, 3), 169–181 (1996)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Liang, F.: Multi-type algebraic proof theory. Ph.D. thesis, TU Delft (2018)Google Scholar
  17. 17.
    Ma, M., Chakraborty, M.K., Lin, Z.: Sequent calculi for varieties of topological quasi-Boolean algebras. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 309–322. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99368-3_24CrossRefGoogle Scholar
  18. 18.
    Manoorkar, K., Nazari, S., Palmigiano, A., Tzimoulis, A., Wijnberg, N.M.: Rough concepts (2018, Submitted)Google Scholar
  19. 19.
    Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst. 29(7), 661–688 (1998)CrossRefGoogle Scholar
  20. 20.
    Saha, A., Sen, J., Chakraborty, M.K.: Algebraic structures in the vicinity of pre-rough algebra and their logics. Inf. Sci. 282, 296–320 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Saha, A., Sen, J., Chakraborty, M.K.: Algebraic structures in the vicinity of pre-rough algebra and their logics II. Inf. Sci. 333, 44–60 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sen, J., Chakraborty, M.K.: A study of interconnections between rough and 3-valued Łukasiewicz logics. Fundamenta Informaticae 51(3), 311–324 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Tzimoulis, A.: Algebraic and proof-theoretic foundations of the logics for social behaviour. Ph.D. thesis, TUDelft (2018)Google Scholar
  24. 24.
    Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8, pp. 61–145. Springer, Dordrecht (2002).  https://doi.org/10.1007/978-94-010-0387-2_2CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Utrecht UniversityUtrechtNetherlands
  2. 2.Chapman UniversityOrangeUSA
  3. 3.Indian Institute of TechnologyKanpurIndia
  4. 4.Delft University of TechnologyDelftNetherlands
  5. 5.Department of Pure and Applied MathematicsUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations