The Undecidability of FO3 and the Calculus of Relations with Just One Binary Relation

  • Yoshiki NakamuraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11600)


The validity problem for first-order logic is a well-known undecidable problem. The undecidability also holds even for \(\mathsf {FO}3\) and (equational formulas of) the calculus of relations. In this paper we tighten these undecidability results to the following: (1) \(\mathsf {FO}3\) with just one binary relation is undecidable even without equality; and (2) the calculus of relations with just one character and with only composition, union, and complement is undecidable. Additionally we prove that the finite validity problem is also undecidable for the above two classes.


First-order logic The calculus of relations Undecidability 


  1. 1.
    Andréka, H., Bredikhin, D.A.: The equational theory of union-free algebras of relations. Algebr. Univers. 33(4), 516–532 (1995). Scholar
  2. 2.
    Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic. 5th edn., p. 350. Cambridge University Press, Cambridge (2007).
  3. 3.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem, p. 482. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1(1), 40–41 (1936). Scholar
  5. 5.
    Givant, S.: The calculus of relations as a foundation for mathematics. J. Autom. Reason. 37(4), 277–322 (2007). Scholar
  6. 6.
    Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37(1), 349–360 (1930). Scholar
  7. 7.
    Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. Bull. Symb. Log. 3(01), 53–69 (1997). Scholar
  8. 8.
    Herbrand, J.: Sur le problème fondamental de la logique mathématique. Sprawozdania z posiedezen Towarzysta Naukowego Warszawskiego, Wydzial III 24, 12–56 (1931)zbMATHGoogle Scholar
  9. 9.
    Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the AEA case. Proc. Natl. Acad. Sci. 48(3), 365–377 (1962). Scholar
  10. 10.
    Kalmár, L.: Zuriickftihrung des Entscheidungsproblems auf den Fall von Formelnmit einer einzigen, bindren, Funktionsvariablen. In: Compositiomathematica, p. 4 (1936)Google Scholar
  11. 11.
    Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980). Scholar
  12. 12.
    Löwenheim, L.: Über Möglichkeiten im Relativkalköl. Mathematische Annalen 76(4), 447–470 (1915)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lutz, C., Sattler, U., Wolter, F.: Modal logic and the two-variable fragment. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 247–261. Springer, Heidelberg (2001). Scholar
  14. 14.
    Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Mathematics, vol. 150, p. 758. Elsevier (2006).
  15. 15.
    Maddux, R.D.: Undecidable semiassociative relation algebras. J. Symb. Log. 59(02), 398–418 (1994). Scholar
  16. 16.
    Mortimer, M.: On languages with two variables. Math. Log. Q. 21(1), 135–140 (1975). Scholar
  17. 17.
    Ramsey, F.P.: On a problem of formal logic. In: Classic Papers in Combinatorics, pp. 1–24. Birkhäuser-Verlag (2009). Scholar
  18. 18.
    Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: International Congress on Logic, Method, and Philosophy of Science, pp. 1–11. Stanford University Press (1962)Google Scholar
  19. 19.
    Skolem, T.: Untersuchungen über die Axiome des Klassenkalküls und ÜberProduktations- und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen. In: Videnskapsselskapets skrifter, I. Matematisk-naturvidenskabelig, vol. 3, p. 37 (1919)Google Scholar
  20. 20.
    Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941). Scholar
  21. 21.
    Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, vol. 41, p. 318. Colloquium Publications. American Mathematical Society (1987)Google Scholar
  22. 22.
    Trakhtenbrot, B.A.: The Impossibility of an algorithm for the decision problem in finite classes. In: Detlovs, V.K. (ed.) Nine Papers on Logic and Quantum Electrodynamics. American Mathematical Society Translations Series 2, vol. 23, pp. 1–5. American Mathematical Society (1963)Google Scholar
  23. 23.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2–42(1), 230–265 (1937). Scholar
  24. 24.
    Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg (2008). Scholar
  25. 25.
    Vardi, M.Y.: Why is modal logic so robustly decidable? Technical report, p. 24 (1997)Google Scholar
  26. 26.
    Willard, R.: Hereditary undecidability of some theories of finite structures. J. Symb. Log. 59(04), 1254–1262 (1994). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations