Advertisement

Compound Objects Comparators in Application to Similarity Detection and Object Recognition

  • Łukasz SosnowskiEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10810)

Abstract

This article presents similarity based reasoning approach for recognition of compound objects. It contains mathematical foundations for comparators theory as well as comparators network theory. It shows also three different practical applications in field of image recognition, text recognition and risk recognition.

References

  1. 1.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif. Intell. Commun. 7(1), 39–59 (1994)Google Scholar
  2. 2.
    Agosta, L.: The Essential Guide to Data Warehousing. Essential Guide Series, Prentice Hall PTR (2000). https://books.google.pl/books?id=p492QgAACAAJ
  3. 3.
    Aho, A.V.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 255–300. MIT Press, Cambridge (1990)Google Scholar
  4. 4.
    Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc., San Francisco (2008)Google Scholar
  5. 5.
    Arabas, J.: Wykłady z algorytmów ewolucyjnych. Wydawnictwo WNT, Warszawa (2004)Google Scholar
  6. 6.
    Ayodele, T.: Introduction to Machine Learning. INTECH Open Access Publisher (2010). http://books.google.pl/books?id=LqS_oAEACAAJ
  7. 7.
    Barbie, M., Puppe, C., Tasnadi, A.: Non-manipulable domains for the borda count. No. 13 in Bonn econ discussion papers (2003)Google Scholar
  8. 8.
    Bembenik, R., Skonieczny, Ł., Rybiński, H., Niezgódka, M. (eds.): Intelligent Tools for Building a Scientific Information Platform. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35647-6Google Scholar
  9. 9.
  10. 10.
    Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997)Google Scholar
  11. 11.
    Berson, A., Smith, S.J.: Data Warehousing, Data Mining, and Olap, 1st edn. McGraw-Hill Inc., New York (1997)Google Scholar
  12. 12.
    Bishop, C.: Neural Networks for Pattern Recognition. Neural Networks for Pattern Recognition. Oxford University Press, Incorporated (1995). http://books.google.es/books?id=-aAwQO_-rXwC
  13. 13.
    Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)Google Scholar
  14. 14.
    Brams, S.J., Fishburn, P.C.: Going from theory to practice: the mixed success of approval voting. Soc. Choice Welfare 25(2–3), 457–474 (2005)zbMATHGoogle Scholar
  15. 15.
    Brun, M., et al.: Model-based evaluation of clustering validation measures. Pattern Recogn. 40(3), 807–824 (2007). http://www.sciencedirect.com/science/article/pii/S0031320306003104zbMATHGoogle Scholar
  16. 16.
    Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT Press, Cambridge (2010). http://www.worldcat.org/title/information-retrieval-implementing-and-evaluating-search-engines/oclc/473652398?lang=dezbMATHGoogle Scholar
  17. 17.
    Cantú-Paz, E., Cheung, S.C.S., Kamath, C.: Retrieval of similar objects in simulation data using machine learning techniques. In: Image Processing: Algorithms and Systems, pp. 251–258 (2004)Google Scholar
  18. 18.
    Cornelis, C., Jensen, R., Martín, G.H., Slȩzak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180(2), 209–224 (2010).  https://doi.org/10.1016/j.ins.2009.09.008MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cross, V., Yu, X., Hu, X.: Unifying ontological similarity measures: a theoretical and empirical investigation. Int. J. Approx. Reason. 54(7), 861–875 (2013)Google Scholar
  20. 20.
    Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-662-03423-1. https://books.google.pl/books?id=6C09oNmYiAgCzbMATHGoogle Scholar
  21. 21.
    Deb, S.: Multimedia Systems and Content-based Image Retrieval. Idea Group Publishing (2004). http://books.google.pl/books?id=GcO4HGbMi7UC
  22. 22.
    Elkind, E., Lang, J., Saffidine, A.: Choosing collectively optimal sets of alternatives based on the condorcet criterion. In: Walsh, T. (ed.) IJCAI, pp. 186–191. IJCAI/AAAI (2011). http://dblp.uni-trier.de/db/conf/ijcai/ijcai2011.html#ElkindLS11
  23. 23.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010)Google Scholar
  24. 24.
    Fodora, J.C., Ovchinnikov, S.: On aggregation of T-transitive fuzzy binary relations. Fuzzy Sets Syst. 72(2), 135–145 (1995). http://www.sciencedirect.com/science/article/pii/0165011494003469MathSciNetzbMATHGoogle Scholar
  25. 25.
    Fokina, E.B., Friedman, S.-D.: Equivalence relations on classes of computable structures. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 198–207. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03073-4_21Google Scholar
  26. 26.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Artificial Intelligence, Addison-Wesley (1989). http://books.google.pl/books?id=3_RQAAAAMAAJ
  27. 27.
    Gomolinska, A., Wolski, M.: Rough inclusion functions and similarity indices. In: CS&P, pp. 145–156 (2013)Google Scholar
  28. 28.
    Gruber, M.: Mastering SQL, 1st edn. SYBEX Inc., Alameda (2000)Google Scholar
  29. 29.
    Gupta, K., Gupta, R.: Fuzzy equivalence relation redefined. Fuzzy Sets Syst. 79(2), 227–233 (1996). http://www.sciencedirect.com/science/article/pii/0165011495001557MathSciNetzbMATHGoogle Scholar
  30. 30.
    Gwiazda, T.: Algorytmy genetyczne: kompendium. Operator krzyżowania dla problemów numerycznych. No. t. 1, Wydawnictwo Naukowe PWN (2007). https://books.google.pl/books?id=16-JGgAACAAJ
  31. 31.
    Han, L., et al.: Firegrid: an e-infrastructure for next-generation emergency response support. J. Parallel Distrib. Comput. 70(11), 1128–1141 (2010)Google Scholar
  32. 32.
    Hegenbarth, F.: Examples of free involutions on manifolds. Math. Ann. 224(2), 117–128 (1976).  https://doi.org/10.1007/BF01436193MathSciNetzbMATHGoogle Scholar
  33. 33.
    ISO 31000 - Risk management (2009)Google Scholar
  34. 34.
    Iwata, T., Saito, K., Yamada, T.: Modeling user behavior in recommender systems based on maximum entropy. In: WWW, pp. 1281–1282 (2007)Google Scholar
  35. 35.
    Janusz, A., Ślȩzak, D., Nguyen, H.S.: Unsupervised similarity learning from textual data. Fundam. Inform. 119(3–4), 319–336 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kacprzyk, J.: Multistage Fuzzy Control: A Model-based Approach to Fuzzy Control and Decision Making. Wiley, Hoboken (2012)zbMATHGoogle Scholar
  37. 37.
    Klement, E.P., Pap, E., Mesiar, R.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000). http://opac.inria.fr/record=b1104736zbMATHGoogle Scholar
  38. 38.
    Kolpakov, R., Raffinot, M.: Faster text fingerprinting. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 15–26. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89097-3_4Google Scholar
  39. 39.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial (1998)Google Scholar
  40. 40.
    Koronacki, J., Mielniczuk, J.: Statistics: for students of technical and natural sciences (in polish). Wydawnictwa Naukowo-Techniczne (2001). http://books.google.pl/books?id=TI4NAQAACAAJ
  41. 41.
    Kosiński, R.: Sztuczne sieci neuronowe: dynamika nieliniowa i chaos. Wydawnictwa Naukowo-Techniczne (2004). https://books.google.pl/books?id=BgmKtwAACAAJ
  42. 42.
    Krasuski, A., Jankowski, A., Skowron, A., Ślȩzak, D.: From sensory data to decision making: a perspective on supporting a fire commander. In: Web Intelligence/IAT Workshops, pp. 229–236 (2013)Google Scholar
  43. 43.
    Krasuski, A., Janusz, A.: Semantic tagging of heterogeneous data: labeling fire & rescue incidents with threats. In: FedCSIS, pp. 77–82 (2013)Google Scholar
  44. 44.
    Kulikowski, J.L.: Toward computer-aided interpretation of situations. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol. 226. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-319-00969-8_1Google Scholar
  45. 45.
    Levitin, G., Lisnianski, A.: Reliability optimization for weighted voting system. Rel. Eng. Sys. Saf. 71(2), 131–138 (2001)Google Scholar
  46. 46.
    Lin, X., Yacoub, S., Burns, J., Simske, S.: Performance analysis of pattern classifier combination by plurality voting. Pattern Recogn. Lett. 24(12), 1959–1969 (2003)Google Scholar
  47. 47.
    Luckham, D.: The Power of Events: an Introduction to Complex Event Processing in Distributed Enterprise Systems. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, ADDISON WESLEY Publishing Company Incorporated (2002). http://books.google.es/books?id=AN1QAAAAMAAJ
  48. 48.
    MacParthalain, N., Jensen, R.: Simultaneous feature and instance selection using fuzzy-rough bireducts. In: FUZZ-IEEE 2013, IEEE International Conference on Fuzzy Systems, Hyderabad, India, 7–10 July 2013, Proceedings, pp. 1–8 (2013). http://dx.doi.org/10.1109/FUZZ-IEEE.2013.6622500
  49. 49.
    Maedche, A., Staab, S.: Comparing ontologies – similarity measures and a comparison study. Technical report, Institute AIFB, University of Karlsruhe, March 2001Google Scholar
  50. 50.
    Mallik, A., Chaudhury, S., Ghosh, H.: Nrityakosha: preserving the intangible heritage of indian classical dance. JOCCH 4(3), 11 (2011)Google Scholar
  51. 51.
    Malmstadt, H., Enke, C., Crouch, S.: Electronic Analog Measurements and Transducers: Instrumentation for Scientists Series 1. Analog Measurements and Transducers. Benjamin (1973). http://books.google.pl/books?id=U9XkSAAACAAJ
  52. 52.
    Marin, N., Medina, J.M., Pons, O., Sanchez, D., Vila, M.A.: Complex object comparison in a fuzzy context. Inf. Softw. Technol. 45, 431–444 (2003)Google Scholar
  53. 53.
    Mas, M., Monserrat, M., Torrens, J.: Modus ponens and modus tollens in discrete implications. Int. J. Approx. Reason. 49(2), 422–435 (2008). https://www.sciencedirect.com/science/article/pii/S0888613X08000637MathSciNetzbMATHGoogle Scholar
  54. 54.
    McKelvey, R.D., Patty, J.W.: A theory of voting in large elections. Game Econ. Behav. 57(1), 155–180 (2006). https://www.sciencedirect.com/science/article/pii/S0899825606000698MathSciNetzbMATHGoogle Scholar
  55. 55.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer-Verlag, London (1996).  https://doi.org/10.1007/978-3-662-03315-9zbMATHGoogle Scholar
  56. 56.
    Mitchell, T.M.: Machine Learning. McGraw Hill Series in Computer Science. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  57. 57.
    Molodtsov, D.: Soft set theory - first results. Comput. Math. Appl. 37(4–5), 19–31 (1999). http://www.sciencedirect.com/science/article/pii/S0898122199000565MathSciNetzbMATHGoogle Scholar
  58. 58.
    Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001).  https://doi.org/10.1145/375360.375365Google Scholar
  59. 59.
    Nesenbergs, M., Mowery, V.O.: Logic synthesis of some high-speed digital comparators. Bell Syst. Tech. J. 38, 19–44 (1959)Google Scholar
  60. 60.
    Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. LNCS Trans. Rough Sets 1(3100), 187–208 (2004)zbMATHGoogle Scholar
  61. 61.
    Pal, S., Shiu, S.: Foundations of Soft Case-Based Reasoning. Wiley Series on Intelligent Systems, Wiley (2004). http://books.google.es/books?id=LqZkJ_snUiYCGoogle Scholar
  62. 62.
    Pawlak, Z.: On rough sets. Bull. EATCS 24, 94–108 (1984)Google Scholar
  63. 63.
    Pawlak, Z.: Rough set theory. KI 15(3), 38–39 (2001)MathSciNetGoogle Scholar
  64. 64.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley (2008). http://books.google.fr/books?id=CpMrHqMPe2UC
  66. 66.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications (Machine Perception and Artificial Intelligence). World Scientific Publishing Co., River Edge (2005)zbMATHGoogle Scholar
  67. 67.
    Peters, J.F.: Near sets: an introduction. Math. Comput. Sci. 7(1), 3–9 (2013)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Polkowski, L.: Approximate Reasoning by Parts: An Introduction to Rough Mereology. Intelligent Systems Reference Library. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22279-5Google Scholar
  69. 69.
    Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation. ISRL, vol. 77. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-12880-1zbMATHGoogle Scholar
  70. 70.
    Quackenbush, R.W.: On the composition of idempotent functions. Algebra Univers. 1(1), 7–12 (1971). http://dx.doi.org/10.1007/BF02944949MathSciNetzbMATHGoogle Scholar
  71. 71.
    Rasmusen, E.: Games and Information: An Introduction to Game Theory. Blackwell (2001). https://books.google.pl/books?id=7ylayBG9sa4C
  72. 72.
    Rinaldi, A.M.: An ontology-driven approach for semantic information retrieval on the web. ACM Trans. Internet Technol. 9, 10:1–10:24 (2009). http://doi.acm.org/10.1145/1552291.1552293Google Scholar
  73. 73.
    Riza, L.S., et al.: Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”. Inf. Sci. 287, 68–89 (2014). http://dx.doi.org/10.1016/j.ins.2014.07.029Google Scholar
  74. 74.
    Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual, 2nd edn. Pearson Higher Education, London (2004)Google Scholar
  75. 75.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: Foundations of Research. Learning Representations by Back-propagating Errors, pp. 696–699. MIT Press, Cambridge (1988). http://dl.acm.org/citation.cfm?id=65669.104451Google Scholar
  76. 76.
    Russ, J.: The Image Processing Handbook, 6th edn. Taylor & Francis, Abingdon-on-Thames (2011). http://books.google.pl/books?id=gxXXRJWfEsoCzbMATHGoogle Scholar
  77. 77.
    Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-76288-1. http://books.google.es/books?id=iRTGlFXt1lwCzbMATHGoogle Scholar
  78. 78.
    Saari, D.G.: The Optimal Ranking Method is the Borda Count. Discussion Papers 638, Northwestern University, Center for Mathematical Studies in Economics and Management Science, January 1985. https://ideas.repec.org/p/nwu/cmsems/638.html
  79. 79.
    Saari, D.G., Merlin, V.R.: The Copeland Method. I: Relat. Dictionary 8, 51–76 (1996)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Schickel-Zuber, V., Faltings, B.: OSS: a semantic similarity function based on hierarchical ontologies. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 551–556. Morgan Kaufmann Publishers Inc., San Francisco (2007). http://dl.acm.org/citation.cfm?id=1625275.1625363
  81. 81.
    Serpico, S., Bruzzone, L., Roli, F.: An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images. Pattern Recogn. Lett. 17(13), 1331–1341 (1996). http://www.sciencedirect.com/science/article/pii/S0167865596000906. Special Issue on Non-conventional Pattern Analysis in Remote SensingGoogle Scholar
  82. 82.
    Shannon, C.E.: A mathematical theory of communication. The Bell Syst. Tech. J. 27, 379–423, 623–656 (July, October 1948). http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdfMathSciNetzbMATHGoogle Scholar
  83. 83.
    Skowron, A., Polkowski, L.: Rough mereological foundations for design, analysis, synthesis, and control in distributed systems. In: Proceedings The Second Joint Annual Conference on Information Sciences, Wrightsville Beach, NC, pp. 129–156 (1998)Google Scholar
  84. 84.
    Ślȩzak, D., Sosnowski, Ł.: SQL-based compound object comparators: a case study of images stored in ICE. In: Kim, T., Kim, H.-K., Khan, M.K., Kiumi, A., Fang, W., Ślęzak, D. (eds.) ASEA 2010. CCIS, vol. 117, pp. 303–316. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17578-7_30Google Scholar
  85. 85.
    Ślȩzak, D.: Approximate reducts in decision tables. In: 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 1159–1164. Universidad de Granada (1996)Google Scholar
  86. 86.
    Ślȩzak, D., Janusz, A.: Ensembles of bireducts: towards robust classification and simple representation. In: Kim, T., et al. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 64–77. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-27142-7_9Google Scholar
  87. 87.
    Śȩlzak, D., Szczuka, M.: Rough neural networks for complex concepts. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 574–582. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72530-5_69Google Scholar
  88. 88.
    Slowinski, R.: A generalization of the indiscernibility relation for rough set analysis of quantitative information. Riv. Matematica Economiche e Sociali 15(1), 65–78 (1992)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Smith, W.D.: Range voting (2000)Google Scholar
  90. 90.
    Sosnowski, Ł.: Identification with compound object comparators technical aspects. In: Hołubiec, J. (ed.) Techniki informacyjne teoria i zastosowania, vol. 1, pp. 168–179. IBS PAN (2011)Google Scholar
  91. 91.
    Sosnowski, Ł.: Characters recognition based on network of comparators. In: Myśliński, A. (ed.) Techniki informacyjne teoria i zastosowania, vol. 4, pp. 123–134. IBS PAN (2012)Google Scholar
  92. 92.
    Sosnowski, Ł.: Applications of comparators in data processing systems. Technical Transactions Automatic Control, pp. 81–98 (2013)Google Scholar
  93. 93.
    Sosnowski, Ł.: Framework of compound object comparators. Intell. Decis. Technol. 9(4), 343–363 (2015)Google Scholar
  94. 94.
    Sosnowski, Ł., Pietruszka, A., Krasuski, A., Janusz, A.: A resemblance based approach for recognition of risks at a fire ground. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, Y.-S. (eds.) AMT 2014. LNCS, vol. 8610, pp. 559–570. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09912-5_47Google Scholar
  95. 95.
    Sosnowski, Ł., Pietruszka, A., Łazowy, S.: Election algorithms applied to the global aggregation in networks of comparators. In: M. Ganzha, L., Maciaszek, M.P., (ed.), Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 135–144. IEEE (2014). http://dx.doi.org/10.15439/2014F494
  96. 96.
    Sosnowski, Ł., Ślȩzak, D.: Comparators for compound object identification. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 342–349. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21881-1_53Google Scholar
  97. 97.
    Sosnowski, Ł., Ślȩzak, D.: Learning in comparator networks. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 643, pp. 316–327. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-66827-7_29Google Scholar
  98. 98.
    Sosnowski, Ł., Ślȩzak, D.: RDBMS framework for contour identification. In: Szczuka, M., Czaja, L., Skowron, A., Kacprzak, M. (eds.) CS&P, pp. 487–498. Białystok University of Technology, Pułtusk (2011). electronic editionGoogle Scholar
  99. 99.
    Sosnowski, Ł., Ślȩzak, D.: How to design a network of comparators. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS (LNAI), vol. 8211, pp. 389–398. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02753-1_39Google Scholar
  100. 100.
    Sosnowski, Ł., Ślȩzak, D.: Networks of compound object comparators. In: FUZZ-IEEE, pp. 1–8 (2013)Google Scholar
  101. 101.
    Sosnowski, Ł., Ślȩzak, D.: Fuzzy set interpretation of comparator networks. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 345–353. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19941-2_33Google Scholar
  102. 102.
    Sosnowski, L., Szczuka, M.S.: Recognition of compound objects based on network of comparators. In: Proceedings of FedCSIS 2016, Position Papers, pp. 33–40 (2016)Google Scholar
  103. 103.
    Staab, S., Maedche, A.: Knowledge portals: ontologies at work. AI Mag. 22(2), 63–75 (2001)Google Scholar
  104. 104.
    Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 537–551. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45006-8_41Google Scholar
  105. 105.
    Sundaram, N., et al.: Streaming similarity search over one billion tweets using parallel locality-sensitive hashing. PVLDB 6(14), 1930–1941 (2013)Google Scholar
  106. 106.
    Szczuka, M., Ślȩzak, D.: Feedforward neural networks for compound signals. Theoret. Comput. Sci. 412(42), 5960–5973 (2011)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Szczuka, M.: The use of rough set methods in knowledge discovery in databases. In: Kuznetsov, S.O., Ślȩzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 28–30. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21881-1_6Google Scholar
  108. 108.
    Szczuka, M.S., Sosnowski, Ł., Krasuski, A., Kreński, K.: Using domain knowledge in initial stages of KDD: optimization of compound object processing. Fundam. Inform. 129(4), 341–364 (2014)MathSciNetGoogle Scholar
  109. 109.
    Tho, D.: Perceptron Problem in Neural Network. GRIN Verlag (2010). https://books.google.pl/books?id=eLWmQfpgansC
  110. 110.
    Tietze, U., Schenk, C., Gamm, E.: Electronic Circuits. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78655-9. http://books.google.pl/books?id=NB5GAQAAIAAJGoogle Scholar
  111. 111.
    Turksen, I.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986). http://www.sciencedirect.com/science/article/pii/0165011486900771MathSciNetzbMATHGoogle Scholar
  112. 112.
    Tversky, A., Shafir, E.: Preference, Belief, and Similarity: Selected Writings. MIT Press, Cambridge (2004)Google Scholar
  113. 113.
    Wilkinson, B.: The Essence of Digital Design. Essence of Engineering. Prentice Hall, Upper Saddle River (1998). http://books.google.es/books?id=-BNTAAAAMAAJGoogle Scholar
  114. 114.
    Yager, R.R., Filev, D.: Summarizing data using a similarity based mountain method. Inf. Sci. 178(3), 816–826 (2008)MathSciNetzbMATHGoogle Scholar
  115. 115.
    Yang, X., Lin, T.Y., Yang, J., Li, Y., Yu, D.: Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 58(3), 521–527 (2009). http://www.sciencedirect.com/science/article/pii/S0898122109003228MathSciNetzbMATHGoogle Scholar
  116. 116.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. J. Inf. Sci. 8(3), 199–249 (1975)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)zbMATHGoogle Scholar
  118. 118.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)MathSciNetzbMATHGoogle Scholar
  119. 119.
    Zadeh, L.A.: Computing with Words - Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing, vol. 277. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27473-2zbMATHGoogle Scholar
  120. 120.
    Zadeh, P.D.H., Reformat, M.: Feature-based similarity assessment in ontology using fuzzy set theory. In: FUZZ-IEEE, pp. 1–7 (2012)Google Scholar
  121. 121.
    Zhao, Y., Luo, F., Wong, S.K.M., Yao, Y.: A general definition of an attribute reduct. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 101–108. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72458-2_12Google Scholar
  122. 122.
    Zhou, J., Pedrycz, W., Miao, D.: Shadowed sets in the characterization of rough-fuzzy clustering. Pattern Recogn. 44(8), 1738–1749 (2011). http://dx.doi.org/10.1016/j.patcog.2011.01.014Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations