Advertisement

Tissue Engineering for the Cartilage Repair of the Ankle

  • Alberto GobbiEmail author
  • Stefan Nehrer
  • Markus Neubauer
  • Katarzyna Herman
Chapter

Abstract

Osteochondral lesions of the talus (OLTs) are common cause of postresidual pain after ankle injury. The “gold standard” has not been established over the years, which is why a variety of different methods of cartilage lesion treatment have been used. Microfracture and bone marrow stimulation, although offered fast return to sports, had worse results in a long-term follow-up. Autologous chondrocyte implantation (ACI) was a next step in treatment of OLTs. However, it is a complex and invasive two-step surgery that requires arthrotomy and, in most of the cases, a medial malleolus osteotomy. Furthermore, the cost of the full procedure is high. The evolution of tissue engineering and scaffold development provided an opportunity to change the surgery technique. A single-stage procedure with the use of hyaluronic acid-based scaffold combined with bone marrow-derived cells has become an alternative to the aforementioned techniques offering a good clinical outcome and satisfactory long-term results.

Keywords

Osteochondral lesions of the talus Scaffold Bone marrow Bone marrow aspirate concentrate (BMAC) Hyaluronan-based scaffold 

References

  1. 1.
    Shepherd DET, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58(1):27–34.CrossRefGoogle Scholar
  2. 2.
    Murawski CD, Kennedy JG. Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 2013;95(11):1045–54.CrossRefGoogle Scholar
  3. 3.
    Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN. Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin. 2003;8(2):233–42.CrossRefGoogle Scholar
  4. 4.
    Hunt SA, Sherman O. Arthroscopic treatment of osteochondral lesions of the talus with correlation of outcome scoring systems. Arthroscopy. 2003;19(4):360–7.CrossRefGoogle Scholar
  5. 5.
    Robinson DE, Winson IG, Harries WJ, Kelly AJ. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg (Br). 2003;85(7):989–93.CrossRefGoogle Scholar
  6. 6.
    Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006;22(10):1085–92.CrossRefGoogle Scholar
  7. 7.
    Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, Dopirak RM. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.CrossRefGoogle Scholar
  8. 8.
    Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F. Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med. 2009;37(Suppl 1):112S–8S.CrossRefGoogle Scholar
  9. 9.
    Kwak SK, Kern BS, Ferkel RD, Chan KW, Kasraeian S, Applegate GR. Autologous chondrocyte implantation of the ankle: 2- to 10-year results. Am J Sports Med. 2014;42(9):2156–64.CrossRefGoogle Scholar
  10. 10.
    Pereterson L, Mandelbaum B, Gobbi A, Francisco R, Autologous Chondrocyte transplantation of the ankle, Basic science, clinical repair and reconstruction of articular cartilage defects: current status and prospects. Timeo. 2006:341–347.Google Scholar
  11. 11.
    Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42(3):648–57.CrossRefGoogle Scholar
  12. 12.
    O'Brien F. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.CrossRefGoogle Scholar
  13. 13.
    Scotti C, Leumann A, Candrian C, et al. Autologous tissue-engineered osteochondral graft for talus osteochondral lesions: state-of-the-art and future perspectives. Tech Foot & Ankle Surg. 2011;10(4):163–8.Google Scholar
  14. 14.
    Frenkel S, Di Cesare P. Scaffolds for articular cartilage repair. Ann Biomed Eng. 2004;32(1):26–34.CrossRefGoogle Scholar
  15. 15.
    Marcacci M, Berruto M, Brocchetta D, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96–105.CrossRefGoogle Scholar
  16. 16.
    Gobbi A, Kon E, Berruto M, et al. Patellofemoral full-thickness chondral defects treated with Hyalo-graft-C: a clinical, arthroscopic, and histologic review. Am J Sports Med. 2006;34:1763–73.CrossRefGoogle Scholar
  17. 17.
    Gobbi A, Katzarnikos G, Lad D. Osteochondral lesions of the talar dome: matrix-induced autologous chondrocyte implantation. In: The foot and ankle: AANA advanced arthroscopic surgical techniques. Thorofare: Slack Inc; 2016. p. 37–48.Google Scholar
  18. 18.
    McCarthy HS, Roberts S. A histological comparison of the repair tissue formed when using either Chondrogide(®) or periosteum during autologous chondrocyte implantation. Osteoarthr Cartil. 2013;12:2048–57.CrossRefGoogle Scholar
  19. 19.
    Valderrabano V, Miska M, Leumann A, et al. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013;41(3):519–27.CrossRefGoogle Scholar
  20. 20.
    Albano D, Martinelli N, Bianchi A, Messina C, Malerba F, Sconfienza LM. Clinical and imaging outcome of osteochondral lesions of the talus treated using autologous matrix-induced chondrogenesis technique with a biomimetic scaffold. BMC Musculoskelet Disord. 2017;18(1):306.CrossRefGoogle Scholar
  21. 21.
    Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2380–7.CrossRefGoogle Scholar
  22. 22.
    Giannini S, Buda R, Battaglia M, et al. One-step repair in talar osteochondral lesions:4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013;41:511–8.CrossRefGoogle Scholar
  23. 23.
    Cavallo C, Desando G, Cattini L, et al. Bone marrow concentrated cell transplantation: rationale for its use in the treatment of human osteochondral lesions. J Biol Regul Homeost Agents. 2013;27(1):165–75.PubMedGoogle Scholar
  24. 24.
    Mesenchymal CA. Stem cells. The past, the present, the future. Cartilage. 2010;1(1):6–9.CrossRefGoogle Scholar
  25. 25.
    Buda R, Vannini F, Castagnini F, et al. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39:893–900.CrossRefGoogle Scholar
  26. 26.
    Gobbi A, Karnatzikos G, Scotti C, et al. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2(3):286–99.CrossRefGoogle Scholar
  27. 27.
    Gobbi A, Whyte GP. Osteochondritis dissecans: pathoanatomy, classification, and advances in biologic surgical treatment. In: Bio-orthopedics. Berlin, Heidelberg: Springer; 2017. p. 489–501.CrossRefGoogle Scholar
  28. 28.
    Murray IR, Robinson PG, West CC, et al. Reporting standards in clinical studies evaluating bone marrow aspirate concentrate: a systematic review. Arthrosc J Arthrosc Relat Surg. 2018;34(4):1366–75.CrossRefGoogle Scholar
  29. 29.
    Kasten P, Beyen I, Egermann M, et al. Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur Cell Mater. 2008;16:47–55.CrossRefGoogle Scholar
  30. 30.
    Nehrer S, Domayer SE, Hirschfeld C, Stelzeneder D, Trattnig S, Dorotka R. Matrix-associated and autologous chondrocyte transplantation in the ankle: clinical and MRI follow-up after 2 to 11 years. Cartilage. 2011;2(1):81.CrossRefGoogle Scholar
  31. 31.
    Sadlik B, Gobbi A, Puszkarz M, Klon W, Whyte GP. Biologic inlay osteochondral reconstruction: arthroscopic one-step osteochondral lesion repair in the knee using morselized bone grafting and hyaluronic acid-based scaffold embedded with bone marrow aspirate concentrate. Arthrosc Tech. 2017;6(2):e383.CrossRefGoogle Scholar
  32. 32.
    Rothrauff BB, Murawski CD, Angthong C, et al. Scaffold-based therapies: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:41S–7S.CrossRefGoogle Scholar
  33. 33.
    Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467(12):3307–20.CrossRefGoogle Scholar
  34. 34.
    Vannini F, Cavallo M, Ramponi L, et al. Return to sports after bone marrow–derived cell transplantation for osteochondral lesions of the talus. Cartilage. 2017;8(1):80–7.CrossRefGoogle Scholar

Copyright information

© ISAKOS 2019

Authors and Affiliations

  • Alberto Gobbi
    • 1
    Email author
  • Stefan Nehrer
    • 2
  • Markus Neubauer
    • 2
  • Katarzyna Herman
    • 1
  1. 1.Orthopaedic Arthroscopic Surgery International (OASI), Bioresearch Foundation Gobbi NPOMilanItaly
  2. 2.Department for Health Sciences, Medicine and Research Center for Regenerative Medicine, Center for Health Sciences and MedicineDanube University KremsKremsAustria

Personalised recommendations