Rechargeable Lithium Metal Batteries

  • Bin Liu
  • Huilin PanEmail author


Along with the state-of-the-art lithium-ion (Li-ion) batteries approaching their limitation in specific energy density, “beyond Li-ion” battery technologies have become alternative energy storage solutions due to their higher specific energy density. Among them, rechargeable lithium metal battery (LMB) has been considered as one of the most promising battery technologies that promises a great increase in energy density. Among the known anode materials, the Li metal has some unique and attractive features, such as an ultrahigh theoretical capacity (3,860 mAh g−1), a lowest negative electrochemical potential (−3.04 vs SHE), and a low gravimetric density (0.534 g cm−1). Therefore, Li metal has rendered as a potential ultimate anode material in rechargeable batteries. Furthermore, a combination of Li metal with oxygen (O2) or sulfur (S) cathodes brings more viable options for the next-generation high-energy rechargeable batteries (3,505 Wh kg−1 for Li-O2, 2,600 Wh kg−1 for Li-S batteries) with a great reduction in battery cost due to the high abundance and broad distribution of O2 and S sources. However, the use of Li metal anode in LMBs still causes some critical issues, including the well-known Li dendritic growth, uncontrolled interfacial reactions with electrolytes, and large volumetric change during Li plating/stripping process. The “short circuit” of the battery by dendrite formation and the continuous depletion of electrolytes/active bulk lithium have been significantly challenging the practical application of rechargeable LMBs. In this chapter, we will discuss the fundamental challenges for both Li anode and cathodes and the proposed strategies for rechargeable LMBs. A perspective on the future research direction is also presented to initiate more helpful thoughts and promote to solve the critical issues in this research field.


Rechargeable batteries Li metal anode Li-S battery Li-air battery 



This work is partially supported by US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152 for the design and execution of experiments, and the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Advanced Battery Materials Research (BMR) program of the US Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.


  1. 1.
    J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). Scholar
  2. 2.
    B. Lee, Y. Ko, G. Kwon, S. Lee, K. Ku, J. Kim, K. Kang, Exploiting biological systems: toward eco-friendly and high-efficiency rechargeable batteries. Joule 2, 61–75 (2018). Scholar
  3. 3.
    X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). Scholar
  4. 4.
    H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). Scholar
  5. 5.
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012). Scholar
  6. 6.
    J.C. Hyesun Kim, Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008). Scholar
  7. 7.
    H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium-ion batteries. Nano Today 7, 414–429 (2012). Scholar
  8. 8.
    B. Liu, X. Wang, H. Chen, Z. Wang, D. Chen, Y.B. Cheng, C. Zhou, G. Shen, Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Sci. Rep. 3, 1622 (2013). Scholar
  9. 9.
    M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, H.-K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455–461 (2008). Scholar
  10. 10.
    X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen, SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5, 7831–7837 (2013). Scholar
  11. 11.
    B. Liu, X. Wang, B. Liu, Q. Wang, D. Tan, W. Song, X. Hou, D. Chen, G. Shen, Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 6, 525–534 (2013). Scholar
  12. 12.
    M.-S. Wu, P.-C.J. Chiang, J.-T. Lee, J.-C. Lin, Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium-ion batteries. J. Phys. Chem. B 109, 23279–23284 (2005). Scholar
  13. 13.
    B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005–3011 (2012). Scholar
  14. 14.
    L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. 22, 23541 (2012). Scholar
  15. 15.
    R.D. Apostolova, E.M. Shembel’, I. Talyosef, J. Grinblat, B. Markovsky, D. Aurbach, Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes. Russ. J. Electrochem. 45, 311–319 (2009). Scholar
  16. 16.
    X. Meng, Y. Cao, J.A. Libera, J.W. Elam, Atomic layer deposition of aluminum sulfide: growth mechanism and electrochemical evaluation in lithium-ion batteries. Chem. Mater. 29, 9043–9052 (2017). Scholar
  17. 17.
    X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, G. Shen, TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 3, 2007 (2013). Scholar
  18. 18.
    B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries. Joule 2, 833–845 (2018). Scholar
  19. 19.
    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). Scholar
  20. 20.
    D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 1, 16128 (2016). Scholar
  21. 21.
    M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976). Scholar
  22. 22.
    C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012). Scholar
  23. 23.
    T.D. Gregory, R.J. Hoffman, R.C. Winterton, Nonaqueous electrochemistry of magnesium: applications to energy storage. J. Electrochem. Soc. 137, 775–780 (1990). Scholar
  24. 24.
    A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017). Scholar
  25. 25.
    K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). Scholar
  26. 26.
    J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990). Scholar
  27. 27.
    R.L. Sacci, N.J. Dudney, K.L. More, L.R. Parent, I. Arslan, N.D. Browning, R.R. Unocic, Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. (Camb.) 50, 2104–2107 (2014). Scholar
  28. 28.
    J.-G. Zhang, W. Xu, W.A. Henderson, Lithium Metal Anodes and Rechargeable Lithium Metal Batteries (Springer, Switzerland, 2016). Scholar
  29. 29.
    O. Crowther, A.C. West, Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806 (2008). Scholar
  30. 30.
    C. Brissot, M. Rosso, J.-N. Chazalviel, P. Baudry, S. Lascaud, In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim. Acta 43, 1569–1574 (1998). Scholar
  31. 31.
    C.-Y. Tang, S.J. Dillon, In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth. J. Electrochem. Soc. 163, A1660–A1665 (2016). Scholar
  32. 32.
    F. Sun, R. Moroni, K. Dong, H. Markötter, D. Zhou, A. Hilger, L. Zielke, R. Zengerle, S. Thiele, J. Banhart, I. Manke, Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron x-ray phase contrast tomography. ACS Energy Lett. 2, 94–104 (2016). Scholar
  33. 33.
    M.S. Park, S.B. Ma, D.J. Lee, D. Im, S.G. Doo, O. Yamamoto, A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014). Scholar
  34. 34.
    D. Aurbach, I. Weissman, H. Yamin, E. Elster, The correlation between charge/discharge rates and morphology, surface chemistry, and performance of Li electrodes and the connection to cycle life of practical batteries. J. Electrochem. Soc. 145, 1421–1426 (1998). Scholar
  35. 35.
    X.H. Liu, L. Zhong, L.Q. Zhang, A. Kushima, S.X. Mao, J. Li, Z.Z. Ye, J.P. Sullivan, J.Y. Huang, Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011). Scholar
  36. 36.
    T. Osaka, T. Homma, T. Momma, H. Yarimizu, In situ observation of lithium deposition processes in solid polymer and gel electrolytes. J. Electroanal. Chem. 421, 153–156 (1997). Scholar
  37. 37.
    R. Bhattacharyya, B. Key, H. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey, In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010). Scholar
  38. 38.
    Y.S. Cohen, Y. Cohen, D. Aurbach, Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000). Scholar
  39. 39.
    D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611–1620 (1987). Scholar
  40. 40.
    B.L. Mehdi, J. Qian, E. Nasybulin, C. Park, D.A. Welch, R. Faller, H. Mehta, W.A. Henderson, W. Xu, C.M. Wang, J.E. Evans, J. Liu, J.G. Zhang, K.T. Mueller, N.D. Browning, Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015). Scholar
  41. 41.
    K.N. Wood, E. Kazyak, A.F. Chadwick, K.H. Chen, J.G. Zhang, K. Thornton, N.P. Dasgupta, Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016). Scholar
  42. 42.
    I.W. Seong, C.H. Hong, B.K. Kim, W.Y. Yoon, The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. J. Power Sources 178, 769–773 (2008). Scholar
  43. 43.
    C. Monroe, J. Newman, Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003). Scholar
  44. 44.
    R. Akolkar, Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources 246, 84–89 (2014). Scholar
  45. 45.
    D. Aurbach, The electrochemical behavior of active metal electrodes in nonaqueous solutions, in Nonaqueous Electrochemistry, (Marcel Dekker, Boca Raton 1999), pp. 289–411.
  46. 46.
    G.B. Appetecchi, F. Croce, F. Ronci, B. Scrosati, F. Alessandrini, M. Carewska, P.P. Prosini, Electrochemical characterization of a composite polymer electrolyte with improved lithium metal electrode interfacial properties. Ionics 5, 59–63 (1999). Scholar
  47. 47.
    K.M. Abraham, J.L. Goldman, The use of the reactive ether, tetrahydrofuran (THF), in rechargeable lithium cells. J. Power Sources 9, 239–245 (1983). Scholar
  48. 48.
    B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). Scholar
  49. 49.
    A. Dey, Film formation on lithium anode in propylene carbonate. J. Electrochem. Soc. 117, C248 (1970). Scholar
  50. 50.
    E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). Scholar
  51. 51.
    D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li-ion batteries. J. Power Sources 89, 206–218 (2000). Scholar
  52. 52.
    D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). Scholar
  53. 53.
    K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). Scholar
  54. 54.
    K. Kanamura, H. Tamura, S. Shiraishi, Z.-I. Takehara, XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts. Electrochim. Acta 40, 913–921 (1995). Scholar
  55. 55.
    K. Kanamura, S. Shiraishi, H. Tamura, Z.-I. Takehara, X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents. J. Electrochem. Soc. 141, 2379–2385 (1994). Scholar
  56. 56.
    F. Ding, W. Xu, X. Chen, J. Zhang, M.H. Engelhard, Y. Zhang, B.R. Johnson, J.V. Crum, T.A. Blake, X. Liu, J.-G. Zhang, Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013). Scholar
  57. 57.
    R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ. Sci. 8, 1905–1922 (2015). Scholar
  58. 58.
    J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W.A. Henderson, Y. Zhang, J.-G. Zhang, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15, 135–144 (2015). Scholar
  59. 59.
    J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang, W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017). Scholar
  60. 60.
    F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). Scholar
  61. 61.
    M.L. Gordin, F. Dai, S. Chen, T. Xu, J. Song, D. Tang, N. Azimi, Z. Zhang, D. Wang, Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 6, 8006–8010 (2014). Scholar
  62. 62.
    X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 3, 14–19 (2017). Scholar
  63. 63.
    S.-K. Jeong, H.-Y. Seo, D.-H. Kim, H.-K. Han, J.-G. Kim, Y.B. Lee, Y. Iriyama, T. Abe, Z. Ogumi, Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. Commun. 10, 635–638 (2008). Scholar
  64. 64.
    L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). Scholar
  65. 65.
    H. Yoona, P.C. Howlett, A.S. Best, M. Forsyth, D.R. MacFarlane, Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J. Electrochem. Soc. 160, A1629–A1637 (2013). Scholar
  66. 66.
    Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014). Scholar
  67. 67.
    J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). Scholar
  68. 68.
    N. Togasaki, T. Momma, T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery. J. Power Sources 307, 98–104 (2016). Scholar
  69. 69.
    B. Liu, W. Xu, P. Yan, X. Sun, M.E. Bowden, J. Read, J. Qian, D. Mei, C.-M. Wang, J.-G. Zhang, Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes. Adv. Funct. Mater. 26, 605–613 (2016). Scholar
  70. 70.
    B. Liu, W. Xu, P. Yan, S.T. Kim, M.H. Engelhard, X. Sun, D. Mei, J. Cho, C.-M. Wang, J.-G. Zhang, Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt-solvent coordination for Li-O2 batteries. Adv. Energy Mater. 7, 1602605 (2017). Scholar
  71. 71.
    S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard, W. Zhao, W. Xu, J. Liu, J.G. Zhang, High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, e1706102 (2018). Scholar
  72. 72.
    J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard, J.-G. Zhang, Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018). Scholar
  73. 73.
    X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard, S.D. Burton, W. Zhao, J. Zheng, Q. Li, M.S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y.S. Meng, J. Liu, J.-G. Zhang, W. Xu, Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem (2018). Scholar
  74. 74.
    S. Chen, J. Zheng, L. Yu, X. Ren, M.H. Engelhard, C. Niu, H. Lee, W. Xu, J. Xiao, J. Liu, J.-G. Zhang, High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule (2018). Scholar
  75. 75.
    S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, All-solid-state lithium-ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013). Scholar
  76. 76.
    Z. Lin, C. Liang, Lithium-sulfur batteries: from liquid to solid cells. J. Mater. Chem. A 3, 936–958 (2015). Scholar
  77. 77.
    V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014). Scholar
  78. 78.
    N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). Scholar
  79. 79.
    S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann, W.G. Zeier, J. Janek, Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016). Scholar
  80. 80.
    W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2015). Scholar
  81. 81.
    X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). Scholar
  82. 82.
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310 (2012). Scholar
  83. 83.
    S. Schweidler, L. de Biasi, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, Volume changes of graphite anodes revisited: a combined operando x-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C 122, 8829–8835 (2018). Scholar
  84. 84.
    N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187 (2014). Scholar
  85. 85.
    D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5 (2015). Scholar
  86. 86.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). Scholar
  87. 87.
    D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). Scholar
  88. 88.
    Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, Y. Lu, H. Wang, K. Yan, X. Tao, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithophilic coating. Proc. Natl. Acad. Sci. 113, 2862–2867 (2016). Scholar
  89. 89.
    D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016)CrossRefGoogle Scholar
  90. 90.
    C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). Scholar
  91. 91.
    C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E.D. Wachsman, Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. 115, 3770–3775 (2018). Scholar
  92. 92.
    Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016). Scholar
  93. 93.
    C. Jin, O. Sheng, J. Luo, H. Yuan, C. Fang, W. Zhang, H. Huang, Y. Gan, Y. Xia, C. Liang, 3D lithium metal embedded within lithophilic porous matrix for stable lithium metal batteries. Nano Energy 37, 177–186 (2017). Scholar
  94. 94.
    S. Matsuda, Y. Kubo, K. Uosaki, S. Nakanishi, Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon 119, 119–123 (2017). Scholar
  95. 95.
    Z. Li, X. Li, L. Zhou, Z. Xiao, S. Zhou, X. Zhang, L. Li, L. Zhi, A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy 49, 179–185 (2018). Scholar
  96. 96.
    W. Deng, X. Zhou, Q. Fang, Z. Liu, Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 8, 1703152 (2018). Scholar
  97. 97.
    S.S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 27, 1700348 (2017). Scholar
  98. 98.
    X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, Z.-Q. Zhang, X.-J. Wu, X.-Q. Yang, Y.-N. Zhou, CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 14, 335–344 (2018). Scholar
  99. 99.
    L.-L. Lu, Y. Zhang, Z. Pan, H.-B. Yao, F. Zhou, S.-H. Yu, Lithiophilic Cu–Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 9, 31–38 (2017). Scholar
  100. 100.
    M. Kotobuki, K. Kanamura, Y. Sato, T. Yoshida, Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J. Power Sources 196, 7750–7754 (2011). Scholar
  101. 101.
    J.-M. Tarascon, M. Armand, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, Singapore, 2011), pp. 171–179. Scholar
  102. 102.
    X. Yao, D. Liu, C. Wang, P. Long, G. Peng, Y.-S. Hu, H. Li, L. Chen, X. Xu, High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16, 7148–7154 (2016). Scholar
  103. 103.
    Y.-S. Hu, Batteries: getting solid. Nat. Energy 1, 16042 (2016). Scholar
  104. 104.
    B. Liu, L. Zhang, S. Xu, D.W. McOwen, Y. Gong, C. Yang, G.R. Pastel, H. Xie, K. Fu, J. Dai, C. Chen, E.D. Wachsman, L. Hu, 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Mater. 14, 376–382 (2018). Scholar
  105. 105.
    C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29, 1702714 (2017). Scholar
  106. 106.
    J. Park, J. Jeong, Y. Lee, M. Oh, M.H. Ryou, Y.M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Adv. Mater. Interfaces 3, 1600140 (2016). Scholar
  107. 107.
    M.H. Ryou, Y.M. Lee, Y. Lee, M. Winter, P. Bieker, Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015). Scholar
  108. 108.
    Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure. Nano Energy 45, 463–470 (2018). Scholar
  109. 109.
    N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016). Scholar
  110. 110.
    K. Yan, H.-W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014). Scholar
  111. 111.
    E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol. 13, 337–344 (2018). Scholar
  112. 112.
    H. Tian, Z.W. Seh, K. Yan, Z. Fu, P. Tang, Y. Lu, R. Zhang, D. Legut, Y. Cui, Q. Zhang, Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv. Energy Mater. 7, 1602528 (2017). Scholar
  113. 113.
    G. Ma, Z. Wen, M. Wu, C. Shen, Q. Wang, J. Jin, X. Wu, A lithium anode protection guided highly-stable lithium-sulfur battery. Chem. Commun. 50, 14209–14212 (2014). Scholar
  114. 114.
    Y.M. Lee, N.-S. Choi, J.H. Park, J.-K. Park, Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J. Power Sources 119, 964–972 (2003). Scholar
  115. 115.
    N.-S. Choi, Y.M. Lee, J.H. Park, J.-K. Park, Interfacial enhancement between lithium electrode and polymer electrolytes. J. Power Sources 119, 610–616 (2003). Scholar
  116. 116.
    H. Lee, D.J. Lee, Y.-J. Kim, J.-K. Park, H.-T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015). Scholar
  117. 117.
    K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005). Scholar
  118. 118.
    A.B.. Kaul, Two-dimensional layered materials: structure, properties, and prospects for device applications. J. Mater. Res. 29, 348–361 (2014). Scholar
  119. 119.
    A.N. Dey, Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc. 118, 1547–1549 (1971). Scholar
  120. 120.
    X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017). Scholar
  121. 121.
    J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P.-C. Hsu, J. Wang, H.-M. Cheng, Y. Cui, Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12, 993 (2017). Scholar
  122. 122.
    X. Yin, W. Tang, I.D. Jung, K.C. Phua, S. Adams, S.W. Lee, G.W. Zheng, Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018). Scholar
  123. 123.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 172 (2011). Scholar
  124. 124.
    B. Liu, P. Yan, W. Xu, J. Zheng, Y. He, L. Luo, M.E. Bowden, C.M. Wang, J.G. Zhang, Electrochemically formed ultrafine metal oxide nanocatalysts for high-performance lithium-oxygen batteries. Nano Lett. 16, 4932–4939 (2016). Scholar
  125. 125.
    B. Liu, W. Xu, P. Yan, P. Bhattacharya, R. Cao, M.E. Bowden, M.H. Engelhard, C.M. Wang, J.G. Zhang, In situ-grown ZnCo2O4 on single-walled carbon nanotubes as air electrode materials for rechargeable lithium-oxygen batteries. ChemSusChem 8, 3697–3703 (2015). Scholar
  126. 126.
    M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013). Scholar
  127. 127.
    B.D. McCloskey, A. Valery, A.C. Luntz, S.R. Gowda, G.M. Wallraff, J.M. Garcia, T. Mori, L.E. Krupp, Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013). Scholar
  128. 128.
    W. Xu, K. Xu, V.V. Viswanathan, S.A. Towne, J.S. Hardy, J. Xiao, Z. Nie, D. Hu, D. Wang, J.-G. Zhang, Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J. Power Sources 196, 9631–9639 (2011). Scholar
  129. 129.
    K.M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996). Scholar
  130. 130.
    Y. Lin, B. Moitoso, C. Martinez-Martinez, E.D. Walsh, S.D. Lacey, J.W. Kim, L. Dai, L. Hu, J.W. Connell, Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Lett. 17, 3252–3260 (2017). Scholar
  131. 131.
    E.N. Nasybulin, W. Xu, B.L. Mehdi, E. Thomsen, M.H. Engelhard, R.C. Masse, P. Bhattacharya, M. Gu, W. Bennett, Z. Nie, C. Wang, N.D. Browning, J.G. Zhang, Formation of interfacial layer and long-term cyclability of Li-O(2) batteries. ACS Appl. Mater. Interfaces 6, 14141–14151 (2014). Scholar
  132. 132.
    A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014). Scholar
  133. 133.
    Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J.-G. Zhang, Y. Wang, J. Liu, Making Li-air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013). Scholar
  134. 134.
    J. Lu, Y. Lei, K.C. Lau, X. Luo, P. Du, J. Wen, R.S. Assary, U. Das, D.J. Miller, J.W. Elam, H.M. Albishri, D.A. El-Hady, Y.K. Sun, L.A. Curtiss, K. Amine, A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013). Scholar
  135. 135.
    B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib, L.F. Nazar, Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772 (2013). Scholar
  136. 136.
    G.M. Veith, J. Nanda, L.H. Delmau, N.J. Dudney, Influence of lithium salts on the discharge chemistry of Li-air cells. J. Phys. Chem. Lett. 3, 1242–1247 (2012). Scholar
  137. 137.
    H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, B. Scrosati, An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012). Scholar
  138. 138.
    F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012). Scholar
  139. 139.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011). Scholar
  140. 140.
    Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, Y. Shao-Horn, Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750 (2013). Scholar
  141. 141.
    S. Song, W. Xu, J. Zheng, L. Luo, M.H. Engelhard, M.E. Bowden, B. Liu, C.M. Wang, J.G. Zhang, Complete decomposition of Li2CO3 in Li-O2 batteries using Ir/B4C as noncarbon-based oxygen electrode. Nano Lett. 17, 1417–1424 (2017). Scholar
  142. 142.
    R. Black, S.H. Oh, J.H. Lee, T. Yim, B. Adams, L.F. Nazar, Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012). Scholar
  143. 143.
    Y.-C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan, Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid-State Lett. 13, A69 (2010). Scholar
  144. 144.
    Y.-C. Lu, H.A. Gasteiger, E. Crumlin, R. McGuire, Y. Shao-Horn, Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J. Electrochem. Soc. 157, A1016 (2010). Scholar
  145. 145.
    Y.-C. Lu, D.G. Kwabi, K.P.C. Yao, J.R. Harding, J. Zhou, L. Zuin, Y. Shao-Horn, The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999 (2011). Scholar
  146. 146.
    Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum−gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010). Scholar
  147. 147.
    A.C. Marschilok, S. Zhu, C.C. Milleville, S.H. Lee, E.S. Takeuchi, K.J. Takeuchi, Electrodes for nonaqueous oxygen reduction based upon conductive polymer-silver composites. J. Electrochem. Soc. 158, A223 (2011). Scholar
  148. 148.
    S. Lee, S. Zhu, C.C. Milleville, C.-Y. Lee, P. Chen, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, Metal-air electrochemical cells: silver–polymer–carbon composite air electrodes. Electrochem. Solid-State Lett. 13, A162 (2010). Scholar
  149. 149.
    A.K. Thapa, T. Ishihara, Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium-air battery. J. Power Sources 196, 7016–7020 (2011). Scholar
  150. 150.
    A.K. Thapa, K. Saimen, T. Ishihara, Pd/MnO[2] air electrode catalyst for rechargeable lithium/air battery. Electrochem. Solid-State Lett. 13, A165 (2010). Scholar
  151. 151.
    J. Lu, Y.J. Lee, X. Luo, K.C. Lau, M. Asadi, H.H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D.J. Miller, Y.S. Jeong, J.B. Park, Z.Z. Fang, B. Kumar, A. Salehi-Khojin, Y.K. Sun, L.A. Curtiss, K. Amine, A lithium-oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016). Scholar
  152. 152.
    H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, Y.H. Kim, M.D. Lima, R. Ovalle Robles, X. Lepro, R.H. Baughman, K. Kang, Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv. Mater. 25, 1348–1352 (2013). Scholar
  153. 153.
    J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 11, 5071–5078 (2011). Scholar
  154. 154.
    Y. Wang, H. Zhou, To draw an air electrode of a Li-air battery by pencil. Energy Environ. Sci. 4, 1704 (2011). Scholar
  155. 155.
    X. Ren, S.S. Zhang, D.T. Tran, J. Read, Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J. Mater. Chem. 21, 10118 (2011). Scholar
  156. 156.
    Y. Li, J. Wang, X. Li, D. Geng, R. Li, X. Sun, Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. (Camb.) 47, 9438–9440 (2011). Scholar
  157. 157.
    E. Yoo, H. Zhou, Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5, 3020–3026 (2011). Scholar
  158. 158.
    B. Liu, W. Xu, J. Tao, P. Yan, J. Zheng, M.H. Engelhard, D. Lu, C. Wang, J.-G. Zhang, Enhanced cyclability of lithium-oxygen batteries with electrodes protected by surface films induced via in situ electrochemical process. Adv. Energy Mater. 8, 1702340 (2018). Scholar
  159. 159.
    M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P.G. Bruce, A stable cathode for the aprotic Li-O2 battery. Nat. Mater. 12, 1050–1056 (2013). Scholar
  160. 160.
    S. Song, W. Xu, R. Cao, L. Luo, M.H. Engelhard, M.E. Bowden, B. Liu, L. Estevez, C.-M. Wang, J.-G. Zhang, B 4 C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries. Nano Energy 33, 195–204 (2017). Scholar
  161. 161.
    T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015). Scholar
  162. 162.
    M. Minakshi, M.G. Blackford, Electrochemical characteristics of B4C or BN added MnO2 cathode material for alkaline batteries. Mater. Chem. Phys. 123, 700–705 (2010). Scholar
  163. 163.
    E. Antolini, E.R. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180, 746–763 (2009). Scholar
  164. 164.
    W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park, I.D. Kim, Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 13, 4190–4197 (2013). Scholar
  165. 165.
    A. Riaz, K.N. Jung, W. Chang, S.B. Lee, T.H. Lim, S.J. Park, R.H. Song, S. Yoon, K.H. Shin, J.W. Lee, Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries. Chem. Commun. (Camb.) 49, 5984–5986 (2013). Scholar
  166. 166.
    A. Débart, J. Bao, G. Armstrong, P.G. Bruce, An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J. Power Sources 174, 1177–1182 (2007). Scholar
  167. 167.
    B. Sun, X. Huang, S. Chen, Y. Zhao, J. Zhang, P. Munroe, G. Wang, Hierarchical macroporous/mesoporous NiCo2O4 nanosheets as cathode catalysts for rechargeable Li–O2 batteries. J. Mater. Chem. A 2, 12053 (2014). Scholar
  168. 168.
    E.M. Benbow, S.P. Kelly, L. Zhao, J.W. Reutenauer, S.L. Suib, Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J. Phys. Chem. C 115, 22009–22017 (2011). Scholar
  169. 169.
    L. Jin, L. Xu, C. Morein, C.-h. Chen, M. Lai, S. Dharmarathna, A. Dobley, S.L. Suib, Titanium containing γ-MnO2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/air batteries and oxidative chemical reactions. Adv. Funct. Mater. 20, 3373–3382 (2010). Scholar
  170. 170.
    J. Read, Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190 (2002). Scholar
  171. 171.
    S. Ma, L. Sun, L. Cong, X. Gao, C. Yao, X. Guo, L. Tai, P. Mei, Y. Zeng, H. Xie, R. Wang, Multiporous MnCo2O4 microspheres as an efficient bifunctional catalyst for nonaqueous Li–O2 batteries. J. Phys. Chem. C 117, 25890–25897 (2013). Scholar
  172. 172.
    H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui, H. Dai, Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 5, 7931 (2012). Scholar
  173. 173.
    T.F. Hung, S.G. Mohamed, C.C. Shen, Y.Q. Tsai, W.S. Chang, R.S. Liu, Mesoporous ZnCo2O4 nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium-oxygen batteries in aprotic media. Nanoscale 5, 12115–12119 (2013). Scholar
  174. 174.
    Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, H. Zhou, Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries. Angew. Chem. Int. Ed. Engl. 53, 442–446 (2014). Scholar
  175. 175.
    E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, H.R. Byon, Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 13, 4679–4684 (2013). Scholar
  176. 176.
    A. Debart, A.J. Paterson, J. Bao, P.G. Bruce, Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. Engl. 47, 4521–4524 (2008). Scholar
  177. 177.
    B. Liu, W. Xu, J. Zheng, P. Yan, E.D. Walter, N. Isern, M.E. Bowden, M.H. Engelhard, S.T. Kim, J. Read, B.D. Adams, X. Li, J. Cho, C. Wang, J.-G. Zhang, Temperature dependence of the oxygen reduction mechanism in nonaqueous Li–O2 batteries. ACS Energy Lett. 2, 2525–2530 (2017). Scholar
  178. 178.
    V. Viswanathan, J.K. Norskov, A. Speidel, R. Scheffler, S. Gowda, A.C. Luntz, Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J. Phys. Chem. Lett. 4, 556–560 (2013). Scholar
  179. 179.
    B.D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, A.C. Luntz, On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries. J. Phys. Chem. C 116, 23897–23905 (2012). Scholar
  180. 180.
    C.J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries. J. Phys. Chem. C 116, 20755–20764 (2012). Scholar
  181. 181.
    C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C 114, 9178–9186 (2010). Scholar
  182. 182.
    L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger, P.C. Ashok, B.B. Praveen, K. Dholakia, J.M. Tarascon, P.G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 6, 1091–1099 (2014). Scholar
  183. 183.
    S. Ganapathy, B.D. Adams, G. Stenou, M.S. Anastasaki, K. Goubitz, X.F. Miao, L.F. Nazar, M. Wagemaker, Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. J. Am. Chem. Soc. 136, 16335–16344 (2014). Scholar
  184. 184.
    T. Zhang, K. Liao, P. He, H. Zhou, A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016). Scholar
  185. 185.
    D. Kundu, R. Black, B. Adams, L.F. Nazar, A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015). Scholar
  186. 186.
    H.D. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K.Y. Park, J. Hong, H. Kim, T. Kim, Y.H. Kim, X. Lepro, R. Ovalle-Robles, R.H. Baughman, K. Kang, Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. Engl. 53, 3926–3931 (2014). Scholar
  187. 187.
    B.J. Bergner, A. Schurmann, K. Peppler, A. Garsuch, J. Janek, TEMPO: a mobile catalyst for rechargeable Li-O(2) batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014). Scholar
  188. 188.
    H. Yamin, E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources 9, 281–287 (1983). Scholar
  189. 189.
  190. 190.
    J.T. Kummer, W. Neill, Google Patents, 1968Google Scholar
  191. 191.
    H. Danuta, U. Juliusz, Google Patents, 1962Google Scholar
  192. 192.
    E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, Lithium-sulfur battery: evaluation of dioxolane-based electrolytes. J. Electrochem. Soc. 136, 1621–1625 (1989). Scholar
  193. 193.
    D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I.R. Gentle, G.Q.M. Lu, Carbon-sulfur composites for Li-S batteries: status and prospects. J. Mater. Chem. A 1, 9382–9394 (2013). Scholar
  194. 194.
    S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013). Scholar
  195. 195.
    Q. Wang, J. Zheng, E. Walter, H. Pan, D. Lv, P. Zuo, H. Chen, Z.D. Deng, B.Y. Liaw, X. Yu, X. Yang, J.-G. Zhang, J. Liu, J. Xiao, Direct observation of sulfur radicals as reaction media in lithium-sulfur batteries. J. Electrochem. Soc. 162, A474–A478 (2015). Scholar
  196. 196.
    J. Xiao, J.Z. Hu, H. Chen, M. Vijayakumar, J. Zheng, H. Pan, E.D. Walter, M. Hu, X. Deng, J. Feng, B.Y. Liaw, M. Gu, Z.D. Deng, D. Lu, S. Xu, C. Wang, J. Liu, Following the transient reactions in lithium–sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 15, 3309–3316 (2015). Scholar
  197. 197.
    Y. Xu, Y. Wen, Y. Zhu, K. Gaskell, K.A. Cychosz, B. Eichhorn, K. Xu, C. Wang, Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv. Funct. Mater. 25, 4312–4320 (2015). Scholar
  198. 198.
    S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012). Scholar
  199. 199.
    X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). Scholar
  200. 200.
    J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012). Scholar
  201. 201.
    C. Zhang, H.B. Wu, C. Yuan, Z. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. 124, 9730–9733 (2012). Scholar
  202. 202.
    Y. Cao, X. Li, I.A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 13, 7660–7665 (2011). Scholar
  203. 203.
    G. Zhou, S. Pei, L. Li, D.-W. Wang, S. Wang, K. Huang, L.-C. Yin, F. Li, H.-M. Cheng, A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26, 625–631 (2014). Scholar
  204. 204.
    G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011). Scholar
  205. 205.
    G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li, Z.W. Seh, Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265–1270 (2013). Scholar
  206. 206.
    Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013). Scholar
  207. 207.
    Q. Pang, D. Kundu, M. Cuisinier, L. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). Scholar
  208. 208.
    X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 127, 3979 (2015). Scholar
  209. 209.
    L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, J. Liu, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012). Scholar
  210. 210.
    Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 48, 8817–8819 (2012). Scholar
  211. 211.
    H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J.J. Cha, W. Li, Z.W. Seh, M.T. McDowell, K. Yan, Z. Liang, Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014). Scholar
  212. 212.
    Z.W. Seh, J.H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 5, 5017 (2014). Scholar
  213. 213.
    X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 127, 3979–3983 (2015). Scholar
  214. 214.
    X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C.J. Hart, D. Houtarde, K. Kaup, H. Sommer, Tuning transition metal oxide–sulfur interactions for long life lithium-sulfur batteries: the “Goldilocks” principle. Adv. Energy Mater. 6, 1501636 (2016). Scholar
  215. 215.
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). Scholar
  216. 216.
    Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang, Y. Cui, Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015). Scholar
  217. 217.
    Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016). Scholar
  218. 218.
    M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015). Scholar
  219. 219.
    D. Eroglu, K.R. Zavadil, K.G. Gallagher, Critical link between materials chemistry and cell-level design for high energy density and low cost lithium-sulfur transportation battery. J. Electrochem. Soc. 162, A982–A990 (2015). Scholar
  220. 220.
    D. Lv, J. Zheng, Q. Li, X. Xie, S. Ferrara, Z. Nie, L.B. Mehdi, N.D. Browning, J.G. Zhang, G.L. Graff, High energy density lithium-sulfur batteries: challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015). Scholar
  221. 221.
    Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar, A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630 (2017). Scholar
  222. 222.
    G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015). Scholar
  223. 223.
    H. Pan, K.S. Han, M.H. Engelhard, R. Cao, J. Chen, J.G. Zhang, K.T. Mueller, Y. Shao, J. Liu, Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Funct. Mater., 1707234 (2018). Scholar
  224. 224.
    H. Pan, J. Chen, R. Cao, V. Murugesan, N.N. Rajput, K.S. Han, K. Persson, L. Estevez, M.H. Engelhard, J.-G. Zhang, K.T. Mueller, Y. Cui, Y. Shao, J. Liu, Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2, 813–820 (2017). Scholar
  225. 225.
    J. Chen, W.A. Henderson, H. Pan, B.R. Perdue, R. Cao, J.Z. Hu, C. Wan, K.S. Han, K.T. Mueller, J.-G. Zhang, Y. Shao, J. Liu, Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017). Scholar
  226. 226.
    H. Nagata, Y. Chikusa, All-solid-state lithium–sulfur battery with high energy and power densities at the cell level. Energ. Technol. 4, 484–489 (2016). Scholar
  227. 227.
    T. Yamada, S. Ito, R. Omoda, T. Watanabe, Y. Aihara, M. Agostini, U. Ulissi, J. Hassoun, B. Scrosati, All solid-state lithium-sulfur battery using a glass-type P2S5–Li2S electrolyte: benefits on anode kinetics. J. Electrochem. Soc. 162, A646–A651 (2015). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Energy and Environment DirectoratePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations