Advertisement

Rechargeable Lithium Metal Batteries

  • Bin Liu
  • Huilin PanEmail author
Chapter

Abstract

Along with the state-of-the-art lithium-ion (Li-ion) batteries approaching their limitation in specific energy density, “beyond Li-ion” battery technologies have become alternative energy storage solutions due to their higher specific energy density. Among them, rechargeable lithium metal battery (LMB) has been considered as one of the most promising battery technologies that promises a great increase in energy density. Among the known anode materials, the Li metal has some unique and attractive features, such as an ultrahigh theoretical capacity (3,860 mAh g−1), a lowest negative electrochemical potential (−3.04 vs SHE), and a low gravimetric density (0.534 g cm−1). Therefore, Li metal has rendered as a potential ultimate anode material in rechargeable batteries. Furthermore, a combination of Li metal with oxygen (O2) or sulfur (S) cathodes brings more viable options for the next-generation high-energy rechargeable batteries (3,505 Wh kg−1 for Li-O2, 2,600 Wh kg−1 for Li-S batteries) with a great reduction in battery cost due to the high abundance and broad distribution of O2 and S sources. However, the use of Li metal anode in LMBs still causes some critical issues, including the well-known Li dendritic growth, uncontrolled interfacial reactions with electrolytes, and large volumetric change during Li plating/stripping process. The “short circuit” of the battery by dendrite formation and the continuous depletion of electrolytes/active bulk lithium have been significantly challenging the practical application of rechargeable LMBs. In this chapter, we will discuss the fundamental challenges for both Li anode and cathodes and the proposed strategies for rechargeable LMBs. A perspective on the future research direction is also presented to initiate more helpful thoughts and promote to solve the critical issues in this research field.

Keywords

Rechargeable batteries Li metal anode Li-S battery Li-air battery 

Notes

Acknowledgments

This work is partially supported by US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152 for the design and execution of experiments, and the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Advanced Battery Materials Research (BMR) program of the US Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

References

  1. 1.
    J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).  https://doi.org/10.1038/35104644CrossRefGoogle Scholar
  2. 2.
    B. Lee, Y. Ko, G. Kwon, S. Lee, K. Ku, J. Kim, K. Kang, Exploiting biological systems: toward eco-friendly and high-efficiency rechargeable batteries. Joule 2, 61–75 (2018).  https://doi.org/10.1016/j.joule.2017.10.013CrossRefGoogle Scholar
  3. 3.
    X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).  https://doi.org/10.1021/acs.chemrev.7b00115CrossRefGoogle Scholar
  4. 4.
    H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).  https://doi.org/10.1038/nenergy.2016.39CrossRefGoogle Scholar
  5. 5.
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012).  https://doi.org/10.1038/nnano.2012.35CrossRefGoogle Scholar
  6. 6.
    J.C. Hyesun Kim, Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008).  https://doi.org/10.1021/nl801853xCrossRefGoogle Scholar
  7. 7.
    H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium-ion batteries. Nano Today 7, 414–429 (2012).  https://doi.org/10.1016/j.nantod.2012.08.004CrossRefGoogle Scholar
  8. 8.
    B. Liu, X. Wang, H. Chen, Z. Wang, D. Chen, Y.B. Cheng, C. Zhou, G. Shen, Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Sci. Rep. 3, 1622 (2013).  https://doi.org/10.1038/srep01622CrossRefGoogle Scholar
  9. 9.
    M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, H.-K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455–461 (2008).  https://doi.org/10.1002/adfm.200700407CrossRefGoogle Scholar
  10. 10.
    X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen, SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5, 7831–7837 (2013).  https://doi.org/10.1039/c3nr02300aCrossRefGoogle Scholar
  11. 11.
    B. Liu, X. Wang, B. Liu, Q. Wang, D. Tan, W. Song, X. Hou, D. Chen, G. Shen, Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 6, 525–534 (2013).  https://doi.org/10.1007/s12274-013-0329-3CrossRefGoogle Scholar
  12. 12.
    M.-S. Wu, P.-C.J. Chiang, J.-T. Lee, J.-C. Lin, Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium-ion batteries. J. Phys. Chem. B 109, 23279–23284 (2005).  https://doi.org/10.1021/jp054740bCrossRefGoogle Scholar
  13. 13.
    B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005–3011 (2012).  https://doi.org/10.1021/nl300794fCrossRefGoogle Scholar
  14. 14.
    L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. 22, 23541 (2012).  https://doi.org/10.1039/c2jm35617aCrossRefGoogle Scholar
  15. 15.
    R.D. Apostolova, E.M. Shembel’, I. Talyosef, J. Grinblat, B. Markovsky, D. Aurbach, Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes. Russ. J. Electrochem. 45, 311–319 (2009).  https://doi.org/10.1134/s1023193509030112CrossRefGoogle Scholar
  16. 16.
    X. Meng, Y. Cao, J.A. Libera, J.W. Elam, Atomic layer deposition of aluminum sulfide: growth mechanism and electrochemical evaluation in lithium-ion batteries. Chem. Mater. 29, 9043–9052 (2017).  https://doi.org/10.1021/acs.chemmater.7b02175CrossRefGoogle Scholar
  17. 17.
    X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, G. Shen, TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 3, 2007 (2013).  https://doi.org/10.1038/srep02007CrossRefGoogle Scholar
  18. 18.
    B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries. Joule 2, 833–845 (2018).  https://doi.org/10.1016/j.joule.2018.03.008CrossRefGoogle Scholar
  19. 19.
    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).  https://doi.org/10.1039/c3ee40795kCrossRefGoogle Scholar
  20. 20.
    D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 1, 16128 (2016).  https://doi.org/10.1038/nenergy.2016.128CrossRefGoogle Scholar
  21. 21.
    M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).  https://doi.org/10.1126/science.192.4244.1126CrossRefGoogle Scholar
  22. 22.
    C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).  https://doi.org/10.1016/j.electacta.2012.05.001CrossRefGoogle Scholar
  23. 23.
    T.D. Gregory, R.J. Hoffman, R.C. Winterton, Nonaqueous electrochemistry of magnesium: applications to energy storage. J. Electrochem. Soc. 137, 775–780 (1990).  https://doi.org/10.1149/1.2086553CrossRefGoogle Scholar
  24. 24.
    A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).  https://doi.org/10.1021/acs.nanolett.6b04755CrossRefGoogle Scholar
  25. 25.
    K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).  https://doi.org/10.1038/nenergy.2016.10CrossRefGoogle Scholar
  26. 26.
    J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990).  https://doi.org/10.1103/PhysRevA.42.7355CrossRefGoogle Scholar
  27. 27.
    R.L. Sacci, N.J. Dudney, K.L. More, L.R. Parent, I. Arslan, N.D. Browning, R.R. Unocic, Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. (Camb.) 50, 2104–2107 (2014).  https://doi.org/10.1039/c3cc49029gCrossRefGoogle Scholar
  28. 28.
    J.-G. Zhang, W. Xu, W.A. Henderson, Lithium Metal Anodes and Rechargeable Lithium Metal Batteries (Springer, Switzerland, 2016).  https://doi.org/10.1007/978-3-319-44054-5CrossRefGoogle Scholar
  29. 29.
    O. Crowther, A.C. West, Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806 (2008).  https://doi.org/10.1149/1.2969424CrossRefGoogle Scholar
  30. 30.
    C. Brissot, M. Rosso, J.-N. Chazalviel, P. Baudry, S. Lascaud, In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim. Acta 43, 1569–1574 (1998).  https://doi.org/10.1016/S0013-4686(97)10055-XCrossRefGoogle Scholar
  31. 31.
    C.-Y. Tang, S.J. Dillon, In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth. J. Electrochem. Soc. 163, A1660–A1665 (2016).  https://doi.org/10.1149/2.0891608jesCrossRefGoogle Scholar
  32. 32.
    F. Sun, R. Moroni, K. Dong, H. Markötter, D. Zhou, A. Hilger, L. Zielke, R. Zengerle, S. Thiele, J. Banhart, I. Manke, Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron x-ray phase contrast tomography. ACS Energy Lett. 2, 94–104 (2016).  https://doi.org/10.1021/acsenergylett.6b00589CrossRefGoogle Scholar
  33. 33.
    M.S. Park, S.B. Ma, D.J. Lee, D. Im, S.G. Doo, O. Yamamoto, A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014).  https://doi.org/10.1038/srep03815CrossRefGoogle Scholar
  34. 34.
    D. Aurbach, I. Weissman, H. Yamin, E. Elster, The correlation between charge/discharge rates and morphology, surface chemistry, and performance of Li electrodes and the connection to cycle life of practical batteries. J. Electrochem. Soc. 145, 1421–1426 (1998).  https://doi.org/10.1149/1.1838498CrossRefGoogle Scholar
  35. 35.
    X.H. Liu, L. Zhong, L.Q. Zhang, A. Kushima, S.X. Mao, J. Li, Z.Z. Ye, J.P. Sullivan, J.Y. Huang, Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011).  https://doi.org/10.1063/1.3585655CrossRefGoogle Scholar
  36. 36.
    T. Osaka, T. Homma, T. Momma, H. Yarimizu, In situ observation of lithium deposition processes in solid polymer and gel electrolytes. J. Electroanal. Chem. 421, 153–156 (1997).  https://doi.org/10.1016/S0022-0728(96)04870-XCrossRefGoogle Scholar
  37. 37.
    R. Bhattacharyya, B. Key, H. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey, In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).  https://doi.org/10.1038/nmat2764CrossRefGoogle Scholar
  38. 38.
    Y.S. Cohen, Y. Cohen, D. Aurbach, Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000).  https://doi.org/10.1021/jp002526bCrossRefGoogle Scholar
  39. 39.
    D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611–1620 (1987).  https://doi.org/10.1149/1.2100722CrossRefGoogle Scholar
  40. 40.
    B.L. Mehdi, J. Qian, E. Nasybulin, C. Park, D.A. Welch, R. Faller, H. Mehta, W.A. Henderson, W. Xu, C.M. Wang, J.E. Evans, J. Liu, J.G. Zhang, K.T. Mueller, N.D. Browning, Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015).  https://doi.org/10.1021/acs.nanolett.5b00175CrossRefGoogle Scholar
  41. 41.
    K.N. Wood, E. Kazyak, A.F. Chadwick, K.H. Chen, J.G. Zhang, K. Thornton, N.P. Dasgupta, Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).  https://doi.org/10.1021/acscentsci.6b00260CrossRefGoogle Scholar
  42. 42.
    I.W. Seong, C.H. Hong, B.K. Kim, W.Y. Yoon, The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. J. Power Sources 178, 769–773 (2008).  https://doi.org/10.1016/j.jpowsour.2007.12.062CrossRefGoogle Scholar
  43. 43.
    C. Monroe, J. Newman, Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003).  https://doi.org/10.1149/1.1606686CrossRefGoogle Scholar
  44. 44.
    R. Akolkar, Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources 246, 84–89 (2014).  https://doi.org/10.1016/j.jpowsour.2013.07.056CrossRefGoogle Scholar
  45. 45.
    D. Aurbach, The electrochemical behavior of active metal electrodes in nonaqueous solutions, in Nonaqueous Electrochemistry, (Marcel Dekker, Boca Raton 1999), pp. 289–411.  https://doi.org/10.1201/9780824741389
  46. 46.
    G.B. Appetecchi, F. Croce, F. Ronci, B. Scrosati, F. Alessandrini, M. Carewska, P.P. Prosini, Electrochemical characterization of a composite polymer electrolyte with improved lithium metal electrode interfacial properties. Ionics 5, 59–63 (1999).  https://doi.org/10.1007/BF02375904CrossRefGoogle Scholar
  47. 47.
    K.M. Abraham, J.L. Goldman, The use of the reactive ether, tetrahydrofuran (THF), in rechargeable lithium cells. J. Power Sources 9, 239–245 (1983).  https://doi.org/10.1016/0378-7753(83)87024-4CrossRefGoogle Scholar
  48. 48.
    B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).  https://doi.org/10.1002/aenm.201702097CrossRefGoogle Scholar
  49. 49.
    A. Dey, Film formation on lithium anode in propylene carbonate. J. Electrochem. Soc. 117, C248 (1970).  https://doi.org/10.1149/1.2407470CrossRefGoogle Scholar
  50. 50.
    E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).  https://doi.org/10.1149/1.2128859CrossRefGoogle Scholar
  51. 51.
    D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li-ion batteries. J. Power Sources 89, 206–218 (2000).  https://doi.org/10.1016/S0378-7753(00)00431-6CrossRefGoogle Scholar
  52. 52.
    D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).  https://doi.org/10.1038/nnano.2017.16CrossRefGoogle Scholar
  53. 53.
    K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).  https://doi.org/10.1021/cr030203gCrossRefGoogle Scholar
  54. 54.
    K. Kanamura, H. Tamura, S. Shiraishi, Z.-I. Takehara, XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts. Electrochim. Acta 40, 913–921 (1995).  https://doi.org/10.1016/0013-4686(93)E0020-MCrossRefGoogle Scholar
  55. 55.
    K. Kanamura, S. Shiraishi, H. Tamura, Z.-I. Takehara, X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents. J. Electrochem. Soc. 141, 2379–2385 (1994).  https://doi.org/10.1149/1.2055129CrossRefGoogle Scholar
  56. 56.
    F. Ding, W. Xu, X. Chen, J. Zhang, M.H. Engelhard, Y. Zhang, B.R. Johnson, J.V. Crum, T.A. Blake, X. Liu, J.-G. Zhang, Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).  https://doi.org/10.1149/2.100310jesCrossRefGoogle Scholar
  57. 57.
    R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ. Sci. 8, 1905–1922 (2015).  https://doi.org/10.1039/c5ee01215eCrossRefGoogle Scholar
  58. 58.
    J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W.A. Henderson, Y. Zhang, J.-G. Zhang, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15, 135–144 (2015).  https://doi.org/10.1016/j.nanoen.2015.04.009CrossRefGoogle Scholar
  59. 59.
    J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang, W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).  https://doi.org/10.1038/nenergy.2017.12CrossRefGoogle Scholar
  60. 60.
    F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).  https://doi.org/10.1021/ja312241yCrossRefGoogle Scholar
  61. 61.
    M.L. Gordin, F. Dai, S. Chen, T. Xu, J. Song, D. Tang, N. Azimi, Z. Zhang, D. Wang, Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 6, 8006–8010 (2014).  https://doi.org/10.1021/am501665sCrossRefGoogle Scholar
  62. 62.
    X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 3, 14–19 (2017).  https://doi.org/10.1021/acsenergylett.7b00982CrossRefGoogle Scholar
  63. 63.
    S.-K. Jeong, H.-Y. Seo, D.-H. Kim, H.-K. Han, J.-G. Kim, Y.B. Lee, Y. Iriyama, T. Abe, Z. Ogumi, Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. Commun. 10, 635–638 (2008).  https://doi.org/10.1016/j.elecom.2008.02.006CrossRefGoogle Scholar
  64. 64.
    L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).  https://doi.org/10.1038/ncomms2513CrossRefGoogle Scholar
  65. 65.
    H. Yoona, P.C. Howlett, A.S. Best, M. Forsyth, D.R. MacFarlane, Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J. Electrochem. Soc. 160, A1629–A1637 (2013).  https://doi.org/10.1149/2.022310jesCrossRefGoogle Scholar
  66. 66.
    Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014).  https://doi.org/10.1021/ja412807wCrossRefGoogle Scholar
  67. 67.
    J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).  https://doi.org/10.1038/ncomms7362CrossRefGoogle Scholar
  68. 68.
    N. Togasaki, T. Momma, T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery. J. Power Sources 307, 98–104 (2016).  https://doi.org/10.1016/j.jpowsour.2015.12.123CrossRefGoogle Scholar
  69. 69.
    B. Liu, W. Xu, P. Yan, X. Sun, M.E. Bowden, J. Read, J. Qian, D. Mei, C.-M. Wang, J.-G. Zhang, Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes. Adv. Funct. Mater. 26, 605–613 (2016).  https://doi.org/10.1002/adfm.201503697CrossRefGoogle Scholar
  70. 70.
    B. Liu, W. Xu, P. Yan, S.T. Kim, M.H. Engelhard, X. Sun, D. Mei, J. Cho, C.-M. Wang, J.-G. Zhang, Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt-solvent coordination for Li-O2 batteries. Adv. Energy Mater. 7, 1602605 (2017).  https://doi.org/10.1002/aenm.201602605CrossRefGoogle Scholar
  71. 71.
    S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard, W. Zhao, W. Xu, J. Liu, J.G. Zhang, High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, e1706102 (2018).  https://doi.org/10.1002/adma.201706102CrossRefGoogle Scholar
  72. 72.
    J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard, J.-G. Zhang, Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018).  https://doi.org/10.1021/acsenergylett.7b01213CrossRefGoogle Scholar
  73. 73.
    X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard, S.D. Burton, W. Zhao, J. Zheng, Q. Li, M.S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y.S. Meng, J. Liu, J.-G. Zhang, W. Xu, Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem (2018).  https://doi.org/10.1016/j.chempr.2018.05.002CrossRefGoogle Scholar
  74. 74.
    S. Chen, J. Zheng, L. Yu, X. Ren, M.H. Engelhard, C. Niu, H. Lee, W. Xu, J. Xiao, J. Liu, J.-G. Zhang, High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule (2018).  https://doi.org/10.1016/j.joule.2018.05.002CrossRefGoogle Scholar
  75. 75.
    S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, All-solid-state lithium-ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013).  https://doi.org/10.1016/j.jpowsour.2013.02.073CrossRefGoogle Scholar
  76. 76.
    Z. Lin, C. Liang, Lithium-sulfur batteries: from liquid to solid cells. J. Mater. Chem. A 3, 936–958 (2015).  https://doi.org/10.1039/c4ta04727cCrossRefGoogle Scholar
  77. 77.
    V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).  https://doi.org/10.1039/c4cs00020jCrossRefGoogle Scholar
  78. 78.
    N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).  https://doi.org/10.1038/nmat3066CrossRefGoogle Scholar
  79. 79.
    S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann, W.G. Zeier, J. Janek, Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).  https://doi.org/10.1021/acs.chemmater.6b00610CrossRefGoogle Scholar
  80. 80.
    W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2015).  https://doi.org/10.1021/acs.chemmater.5b04082CrossRefGoogle Scholar
  81. 81.
    X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).  https://doi.org/10.1038/nmat4821CrossRefGoogle Scholar
  82. 82.
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310 (2012).  https://doi.org/10.1038/nnano.2012.35CrossRefGoogle Scholar
  83. 83.
    S. Schweidler, L. de Biasi, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, Volume changes of graphite anodes revisited: a combined operando x-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C 122, 8829–8835 (2018).  https://doi.org/10.1021/acs.jpcc.8b01873CrossRefGoogle Scholar
  84. 84.
    N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187 (2014).  https://doi.org/10.1038/nnano.2014.6CrossRefGoogle Scholar
  85. 85.
    D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5 (2015).  https://doi.org/10.1002/aenm.201400993CrossRefGoogle Scholar
  86. 86.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).  https://doi.org/10.1016/j.mattod.2014.10.040CrossRefGoogle Scholar
  87. 87.
    D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).  https://doi.org/10.1038/nnano.2017.16CrossRefGoogle Scholar
  88. 88.
    Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, Y. Lu, H. Wang, K. Yan, X. Tao, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithophilic coating. Proc. Natl. Acad. Sci. 113, 2862–2867 (2016).  https://doi.org/10.1073/pnas.1518188113CrossRefGoogle Scholar
  89. 89.
    D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016)CrossRefGoogle Scholar
  90. 90.
    C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).  https://doi.org/10.1038/ncomms9058CrossRefGoogle Scholar
  91. 91.
    C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E.D. Wachsman, Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. 115, 3770–3775 (2018).  https://doi.org/10.1073/pnas.1719758115CrossRefGoogle Scholar
  92. 92.
    Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).  https://doi.org/10.1038/ncomms10992CrossRefGoogle Scholar
  93. 93.
    C. Jin, O. Sheng, J. Luo, H. Yuan, C. Fang, W. Zhang, H. Huang, Y. Gan, Y. Xia, C. Liang, 3D lithium metal embedded within lithophilic porous matrix for stable lithium metal batteries. Nano Energy 37, 177–186 (2017).  https://doi.org/10.1016/j.nanoen.2017.05.015CrossRefGoogle Scholar
  94. 94.
    S. Matsuda, Y. Kubo, K. Uosaki, S. Nakanishi, Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon 119, 119–123 (2017).  https://doi.org/10.1016/j.carbon.2017.04.032CrossRefGoogle Scholar
  95. 95.
    Z. Li, X. Li, L. Zhou, Z. Xiao, S. Zhou, X. Zhang, L. Li, L. Zhi, A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy 49, 179–185 (2018).  https://doi.org/10.1016/j.nanoen.2018.04.040CrossRefGoogle Scholar
  96. 96.
    W. Deng, X. Zhou, Q. Fang, Z. Liu, Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 8, 1703152 (2018).  https://doi.org/10.1002/aenm.201703152CrossRefGoogle Scholar
  97. 97.
    S.S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 27, 1700348 (2017).  https://doi.org/10.1002/adfm.201700348CrossRefGoogle Scholar
  98. 98.
    X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, Z.-Q. Zhang, X.-J. Wu, X.-Q. Yang, Y.-N. Zhou, CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 14, 335–344 (2018).  https://doi.org/10.1016/j.ensm.2018.05.017CrossRefGoogle Scholar
  99. 99.
    L.-L. Lu, Y. Zhang, Z. Pan, H.-B. Yao, F. Zhou, S.-H. Yu, Lithiophilic Cu–Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 9, 31–38 (2017).  https://doi.org/10.1016/j.ensm.2017.06.004CrossRefGoogle Scholar
  100. 100.
    M. Kotobuki, K. Kanamura, Y. Sato, T. Yoshida, Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J. Power Sources 196, 7750–7754 (2011).  https://doi.org/10.1016/j.jpowsour.2011.04.047CrossRefGoogle Scholar
  101. 101.
    J.-M. Tarascon, M. Armand, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, Singapore, 2011), pp. 171–179.  https://doi.org/10.1142/9789814317665_0024CrossRefGoogle Scholar
  102. 102.
    X. Yao, D. Liu, C. Wang, P. Long, G. Peng, Y.-S. Hu, H. Li, L. Chen, X. Xu, High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16, 7148–7154 (2016).  https://doi.org/10.1021/acs.nanolett.6b03448CrossRefGoogle Scholar
  103. 103.
    Y.-S. Hu, Batteries: getting solid. Nat. Energy 1, 16042 (2016).  https://doi.org/10.1038/nenergy.2016.42CrossRefGoogle Scholar
  104. 104.
    B. Liu, L. Zhang, S. Xu, D.W. McOwen, Y. Gong, C. Yang, G.R. Pastel, H. Xie, K. Fu, J. Dai, C. Chen, E.D. Wachsman, L. Hu, 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Mater. 14, 376–382 (2018).  https://doi.org/10.1016/j.ensm.2018.04.015CrossRefGoogle Scholar
  105. 105.
    C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29, 1702714 (2017).  https://doi.org/10.1002/adma.201702714CrossRefGoogle Scholar
  106. 106.
    J. Park, J. Jeong, Y. Lee, M. Oh, M.H. Ryou, Y.M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Adv. Mater. Interfaces 3, 1600140 (2016).  https://doi.org/10.1002/admi.201600140CrossRefGoogle Scholar
  107. 107.
    M.H. Ryou, Y.M. Lee, Y. Lee, M. Winter, P. Bieker, Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015).  https://doi.org/10.1002/adfm.201402953CrossRefGoogle Scholar
  108. 108.
    Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure. Nano Energy 45, 463–470 (2018).  https://doi.org/10.1016/j.nanoen.2018.01.019CrossRefGoogle Scholar
  109. 109.
    N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).  https://doi.org/10.1002/adma.201504526CrossRefGoogle Scholar
  110. 110.
    K. Yan, H.-W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).  https://doi.org/10.1021/nl503125uCrossRefGoogle Scholar
  111. 111.
    E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol. 13, 337–344 (2018).  https://doi.org/10.1038/s41565-018-0061-yCrossRefGoogle Scholar
  112. 112.
    H. Tian, Z.W. Seh, K. Yan, Z. Fu, P. Tang, Y. Lu, R. Zhang, D. Legut, Y. Cui, Q. Zhang, Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv. Energy Mater. 7, 1602528 (2017).  https://doi.org/10.1002/aenm.201602528CrossRefGoogle Scholar
  113. 113.
    G. Ma, Z. Wen, M. Wu, C. Shen, Q. Wang, J. Jin, X. Wu, A lithium anode protection guided highly-stable lithium-sulfur battery. Chem. Commun. 50, 14209–14212 (2014).  https://doi.org/10.1039/C4CC05535GCrossRefGoogle Scholar
  114. 114.
    Y.M. Lee, N.-S. Choi, J.H. Park, J.-K. Park, Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J. Power Sources 119, 964–972 (2003).  https://doi.org/10.1016/S0378-7753(03)00300-8CrossRefGoogle Scholar
  115. 115.
    N.-S. Choi, Y.M. Lee, J.H. Park, J.-K. Park, Interfacial enhancement between lithium electrode and polymer electrolytes. J. Power Sources 119, 610–616 (2003).  https://doi.org/10.1016/S0378-7753(03)00305-7CrossRefGoogle Scholar
  116. 116.
    H. Lee, D.J. Lee, Y.-J. Kim, J.-K. Park, H.-T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015).  https://doi.org/10.1016/j.jpowsour.2015.03.004CrossRefGoogle Scholar
  117. 117.
    K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005).  https://doi.org/10.1073/pnas.0502848102CrossRefGoogle Scholar
  118. 118.
    A.B.. Kaul, Two-dimensional layered materials: structure, properties, and prospects for device applications. J. Mater. Res. 29, 348–361 (2014).  https://doi.org/10.1557/jmr.2014.6CrossRefGoogle Scholar
  119. 119.
    A.N. Dey, Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc. 118, 1547–1549 (1971).  https://doi.org/10.1149/1.2407783CrossRefGoogle Scholar
  120. 120.
    X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017).  https://doi.org/10.1038/nenergy.2017.119CrossRefGoogle Scholar
  121. 121.
    J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P.-C. Hsu, J. Wang, H.-M. Cheng, Y. Cui, Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12, 993 (2017).  https://doi.org/10.1038/nnano.2017.129CrossRefGoogle Scholar
  122. 122.
    X. Yin, W. Tang, I.D. Jung, K.C. Phua, S. Adams, S.W. Lee, G.W. Zheng, Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50, 659–664 (2018).  https://doi.org/10.1016/j.nanoen.2018.06.003CrossRefGoogle Scholar
  123. 123.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 172 (2011).  https://doi.org/10.1038/nmat3237CrossRefGoogle Scholar
  124. 124.
    B. Liu, P. Yan, W. Xu, J. Zheng, Y. He, L. Luo, M.E. Bowden, C.M. Wang, J.G. Zhang, Electrochemically formed ultrafine metal oxide nanocatalysts for high-performance lithium-oxygen batteries. Nano Lett. 16, 4932–4939 (2016).  https://doi.org/10.1021/acs.nanolett.6b01556CrossRefGoogle Scholar
  125. 125.
    B. Liu, W. Xu, P. Yan, P. Bhattacharya, R. Cao, M.E. Bowden, M.H. Engelhard, C.M. Wang, J.G. Zhang, In situ-grown ZnCo2O4 on single-walled carbon nanotubes as air electrode materials for rechargeable lithium-oxygen batteries. ChemSusChem 8, 3697–3703 (2015).  https://doi.org/10.1002/cssc.201500636CrossRefGoogle Scholar
  126. 126.
    M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).  https://doi.org/10.1021/ja310258xCrossRefGoogle Scholar
  127. 127.
    B.D. McCloskey, A. Valery, A.C. Luntz, S.R. Gowda, G.M. Wallraff, J.M. Garcia, T. Mori, L.E. Krupp, Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).  https://doi.org/10.1021/jz401659fCrossRefGoogle Scholar
  128. 128.
    W. Xu, K. Xu, V.V. Viswanathan, S.A. Towne, J.S. Hardy, J. Xiao, Z. Nie, D. Hu, D. Wang, J.-G. Zhang, Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J. Power Sources 196, 9631–9639 (2011).  https://doi.org/10.1016/j.jpowsour.2011.06.099CrossRefGoogle Scholar
  129. 129.
    K.M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).  https://doi.org/10.1149/1.1836378CrossRefGoogle Scholar
  130. 130.
    Y. Lin, B. Moitoso, C. Martinez-Martinez, E.D. Walsh, S.D. Lacey, J.W. Kim, L. Dai, L. Hu, J.W. Connell, Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Lett. 17, 3252–3260 (2017).  https://doi.org/10.1021/acs.nanolett.7b00872CrossRefGoogle Scholar
  131. 131.
    E.N. Nasybulin, W. Xu, B.L. Mehdi, E. Thomsen, M.H. Engelhard, R.C. Masse, P. Bhattacharya, M. Gu, W. Bennett, Z. Nie, C. Wang, N.D. Browning, J.G. Zhang, Formation of interfacial layer and long-term cyclability of Li-O(2) batteries. ACS Appl. Mater. Interfaces 6, 14141–14151 (2014).  https://doi.org/10.1021/am503390qCrossRefGoogle Scholar
  132. 132.
    A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014).  https://doi.org/10.1021/cr500054yCrossRefGoogle Scholar
  133. 133.
    Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J.-G. Zhang, Y. Wang, J. Liu, Making Li-air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013).  https://doi.org/10.1002/adfm.201200688CrossRefGoogle Scholar
  134. 134.
    J. Lu, Y. Lei, K.C. Lau, X. Luo, P. Du, J. Wen, R.S. Assary, U. Das, D.J. Miller, J.W. Elam, H.M. Albishri, D.A. El-Hady, Y.K. Sun, L.A. Curtiss, K. Amine, A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).  https://doi.org/10.1038/ncomms3383CrossRefGoogle Scholar
  135. 135.
    B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib, L.F. Nazar, Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772 (2013).  https://doi.org/10.1039/c3ee40697kCrossRefGoogle Scholar
  136. 136.
    G.M. Veith, J. Nanda, L.H. Delmau, N.J. Dudney, Influence of lithium salts on the discharge chemistry of Li-air cells. J. Phys. Chem. Lett. 3, 1242–1247 (2012).  https://doi.org/10.1021/jz300430sCrossRefGoogle Scholar
  137. 137.
    H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, B. Scrosati, An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012).  https://doi.org/10.1038/nchem.1376CrossRefGoogle Scholar
  138. 138.
    F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012).  https://doi.org/10.1039/c1cs15228aCrossRefGoogle Scholar
  139. 139.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011).  https://doi.org/10.1038/nmat3191CrossRefGoogle Scholar
  140. 140.
    Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, Y. Shao-Horn, Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750 (2013).  https://doi.org/10.1039/c3ee23966gCrossRefGoogle Scholar
  141. 141.
    S. Song, W. Xu, J. Zheng, L. Luo, M.H. Engelhard, M.E. Bowden, B. Liu, C.M. Wang, J.G. Zhang, Complete decomposition of Li2CO3 in Li-O2 batteries using Ir/B4C as noncarbon-based oxygen electrode. Nano Lett. 17, 1417–1424 (2017).  https://doi.org/10.1021/acs.nanolett.6b04371CrossRefGoogle Scholar
  142. 142.
    R. Black, S.H. Oh, J.H. Lee, T. Yim, B. Adams, L.F. Nazar, Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).  https://doi.org/10.1021/ja2111543CrossRefGoogle Scholar
  143. 143.
    Y.-C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan, Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid-State Lett. 13, A69 (2010).  https://doi.org/10.1149/1.3363047CrossRefGoogle Scholar
  144. 144.
    Y.-C. Lu, H.A. Gasteiger, E. Crumlin, R. McGuire, Y. Shao-Horn, Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J. Electrochem. Soc. 157, A1016 (2010).  https://doi.org/10.1149/1.3462981CrossRefGoogle Scholar
  145. 145.
    Y.-C. Lu, D.G. Kwabi, K.P.C. Yao, J.R. Harding, J. Zhou, L. Zuin, Y. Shao-Horn, The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999 (2011).  https://doi.org/10.1039/c1ee01500aCrossRefGoogle Scholar
  146. 146.
    Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum−gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).  https://doi.org/10.1021/ja1036572CrossRefGoogle Scholar
  147. 147.
    A.C. Marschilok, S. Zhu, C.C. Milleville, S.H. Lee, E.S. Takeuchi, K.J. Takeuchi, Electrodes for nonaqueous oxygen reduction based upon conductive polymer-silver composites. J. Electrochem. Soc. 158, A223 (2011).  https://doi.org/10.1149/1.3527992CrossRefGoogle Scholar
  148. 148.
    S. Lee, S. Zhu, C.C. Milleville, C.-Y. Lee, P. Chen, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, Metal-air electrochemical cells: silver–polymer–carbon composite air electrodes. Electrochem. Solid-State Lett. 13, A162 (2010).  https://doi.org/10.1149/1.3479660CrossRefGoogle Scholar
  149. 149.
    A.K. Thapa, T. Ishihara, Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium-air battery. J. Power Sources 196, 7016–7020 (2011).  https://doi.org/10.1016/j.jpowsour.2010.09.112CrossRefGoogle Scholar
  150. 150.
    A.K. Thapa, K. Saimen, T. Ishihara, Pd/MnO[2] air electrode catalyst for rechargeable lithium/air battery. Electrochem. Solid-State Lett. 13, A165 (2010).  https://doi.org/10.1149/1.3481762CrossRefGoogle Scholar
  151. 151.
    J. Lu, Y.J. Lee, X. Luo, K.C. Lau, M. Asadi, H.H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D.J. Miller, Y.S. Jeong, J.B. Park, Z.Z. Fang, B. Kumar, A. Salehi-Khojin, Y.K. Sun, L.A. Curtiss, K. Amine, A lithium-oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).  https://doi.org/10.1038/nature16484CrossRefGoogle Scholar
  152. 152.
    H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, Y.H. Kim, M.D. Lima, R. Ovalle Robles, X. Lepro, R.H. Baughman, K. Kang, Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv. Mater. 25, 1348–1352 (2013).  https://doi.org/10.1002/adma.201204018CrossRefGoogle Scholar
  153. 153.
    J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 11, 5071–5078 (2011).  https://doi.org/10.1021/nl203332eCrossRefGoogle Scholar
  154. 154.
    Y. Wang, H. Zhou, To draw an air electrode of a Li-air battery by pencil. Energy Environ. Sci. 4, 1704 (2011).  https://doi.org/10.1039/c0ee00759eCrossRefGoogle Scholar
  155. 155.
    X. Ren, S.S. Zhang, D.T. Tran, J. Read, Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J. Mater. Chem. 21, 10118 (2011).  https://doi.org/10.1039/c0jm04170jCrossRefGoogle Scholar
  156. 156.
    Y. Li, J. Wang, X. Li, D. Geng, R. Li, X. Sun, Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. (Camb.) 47, 9438–9440 (2011).  https://doi.org/10.1039/c1cc13464gCrossRefGoogle Scholar
  157. 157.
    E. Yoo, H. Zhou, Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5, 3020–3026 (2011).  https://doi.org/10.1021/nn200084uCrossRefGoogle Scholar
  158. 158.
    B. Liu, W. Xu, J. Tao, P. Yan, J. Zheng, M.H. Engelhard, D. Lu, C. Wang, J.-G. Zhang, Enhanced cyclability of lithium-oxygen batteries with electrodes protected by surface films induced via in situ electrochemical process. Adv. Energy Mater. 8, 1702340 (2018).  https://doi.org/10.1002/aenm.201702340CrossRefGoogle Scholar
  159. 159.
    M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P.G. Bruce, A stable cathode for the aprotic Li-O2 battery. Nat. Mater. 12, 1050–1056 (2013).  https://doi.org/10.1038/nmat3737CrossRefGoogle Scholar
  160. 160.
    S. Song, W. Xu, R. Cao, L. Luo, M.H. Engelhard, M.E. Bowden, B. Liu, L. Estevez, C.-M. Wang, J.-G. Zhang, B 4 C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries. Nano Energy 33, 195–204 (2017).  https://doi.org/10.1016/j.nanoen.2017.01.042CrossRefGoogle Scholar
  161. 161.
    T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).  https://doi.org/10.1126/science.aac7730CrossRefGoogle Scholar
  162. 162.
    M. Minakshi, M.G. Blackford, Electrochemical characteristics of B4C or BN added MnO2 cathode material for alkaline batteries. Mater. Chem. Phys. 123, 700–705 (2010).  https://doi.org/10.1016/j.matchemphys.2010.05.041CrossRefGoogle Scholar
  163. 163.
    E. Antolini, E.R. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180, 746–763 (2009).  https://doi.org/10.1016/j.ssi.2009.03.007CrossRefGoogle Scholar
  164. 164.
    W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park, I.D. Kim, Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 13, 4190–4197 (2013).  https://doi.org/10.1021/nl401868qCrossRefGoogle Scholar
  165. 165.
    A. Riaz, K.N. Jung, W. Chang, S.B. Lee, T.H. Lim, S.J. Park, R.H. Song, S. Yoon, K.H. Shin, J.W. Lee, Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries. Chem. Commun. (Camb.) 49, 5984–5986 (2013).  https://doi.org/10.1039/c3cc42794cCrossRefGoogle Scholar
  166. 166.
    A. Débart, J. Bao, G. Armstrong, P.G. Bruce, An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J. Power Sources 174, 1177–1182 (2007).  https://doi.org/10.1016/j.jpowsour.2007.06.180CrossRefGoogle Scholar
  167. 167.
    B. Sun, X. Huang, S. Chen, Y. Zhao, J. Zhang, P. Munroe, G. Wang, Hierarchical macroporous/mesoporous NiCo2O4 nanosheets as cathode catalysts for rechargeable Li–O2 batteries. J. Mater. Chem. A 2, 12053 (2014).  https://doi.org/10.1039/c4ta01888eCrossRefGoogle Scholar
  168. 168.
    E.M. Benbow, S.P. Kelly, L. Zhao, J.W. Reutenauer, S.L. Suib, Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J. Phys. Chem. C 115, 22009–22017 (2011).  https://doi.org/10.1021/jp2055443CrossRefGoogle Scholar
  169. 169.
    L. Jin, L. Xu, C. Morein, C.-h. Chen, M. Lai, S. Dharmarathna, A. Dobley, S.L. Suib, Titanium containing γ-MnO2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/air batteries and oxidative chemical reactions. Adv. Funct. Mater. 20, 3373–3382 (2010).  https://doi.org/10.1002/adfm.201001080CrossRefGoogle Scholar
  170. 170.
    J. Read, Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190 (2002).  https://doi.org/10.1149/1.1498256CrossRefGoogle Scholar
  171. 171.
    S. Ma, L. Sun, L. Cong, X. Gao, C. Yao, X. Guo, L. Tai, P. Mei, Y. Zeng, H. Xie, R. Wang, Multiporous MnCo2O4 microspheres as an efficient bifunctional catalyst for nonaqueous Li–O2 batteries. J. Phys. Chem. C 117, 25890–25897 (2013).  https://doi.org/10.1021/jp407576qCrossRefGoogle Scholar
  172. 172.
    H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui, H. Dai, Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 5, 7931 (2012).  https://doi.org/10.1039/c2ee21746eCrossRefGoogle Scholar
  173. 173.
    T.F. Hung, S.G. Mohamed, C.C. Shen, Y.Q. Tsai, W.S. Chang, R.S. Liu, Mesoporous ZnCo2O4 nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium-oxygen batteries in aprotic media. Nanoscale 5, 12115–12119 (2013).  https://doi.org/10.1039/c3nr04271eCrossRefGoogle Scholar
  174. 174.
    Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, H. Zhou, Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries. Angew. Chem. Int. Ed. Engl. 53, 442–446 (2014).  https://doi.org/10.1002/anie.201307976CrossRefGoogle Scholar
  175. 175.
    E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, H.R. Byon, Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 13, 4679–4684 (2013).  https://doi.org/10.1021/nl4020952CrossRefGoogle Scholar
  176. 176.
    A. Debart, A.J. Paterson, J. Bao, P.G. Bruce, Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. Engl. 47, 4521–4524 (2008).  https://doi.org/10.1002/anie.200705648CrossRefGoogle Scholar
  177. 177.
    B. Liu, W. Xu, J. Zheng, P. Yan, E.D. Walter, N. Isern, M.E. Bowden, M.H. Engelhard, S.T. Kim, J. Read, B.D. Adams, X. Li, J. Cho, C. Wang, J.-G. Zhang, Temperature dependence of the oxygen reduction mechanism in nonaqueous Li–O2 batteries. ACS Energy Lett. 2, 2525–2530 (2017).  https://doi.org/10.1021/acsenergylett.7b00845CrossRefGoogle Scholar
  178. 178.
    V. Viswanathan, J.K. Norskov, A. Speidel, R. Scheffler, S. Gowda, A.C. Luntz, Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J. Phys. Chem. Lett. 4, 556–560 (2013).  https://doi.org/10.1021/jz400019yCrossRefGoogle Scholar
  179. 179.
    B.D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, A.C. Luntz, On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries. J. Phys. Chem. C 116, 23897–23905 (2012).  https://doi.org/10.1021/jp306680fCrossRefGoogle Scholar
  180. 180.
    C.J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries. J. Phys. Chem. C 116, 20755–20764 (2012).  https://doi.org/10.1021/jp306718vCrossRefGoogle Scholar
  181. 181.
    C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C 114, 9178–9186 (2010).  https://doi.org/10.1021/jp102019yCrossRefGoogle Scholar
  182. 182.
    L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger, P.C. Ashok, B.B. Praveen, K. Dholakia, J.M. Tarascon, P.G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 6, 1091–1099 (2014).  https://doi.org/10.1038/nchem.2101CrossRefGoogle Scholar
  183. 183.
    S. Ganapathy, B.D. Adams, G. Stenou, M.S. Anastasaki, K. Goubitz, X.F. Miao, L.F. Nazar, M. Wagemaker, Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. J. Am. Chem. Soc. 136, 16335–16344 (2014).  https://doi.org/10.1021/ja508794rCrossRefGoogle Scholar
  184. 184.
    T. Zhang, K. Liao, P. He, H. Zhou, A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016).  https://doi.org/10.1039/c5ee02803eCrossRefGoogle Scholar
  185. 185.
    D. Kundu, R. Black, B. Adams, L.F. Nazar, A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015).  https://doi.org/10.1021/acscentsci.5b00267CrossRefGoogle Scholar
  186. 186.
    H.D. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K.Y. Park, J. Hong, H. Kim, T. Kim, Y.H. Kim, X. Lepro, R. Ovalle-Robles, R.H. Baughman, K. Kang, Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. Engl. 53, 3926–3931 (2014).  https://doi.org/10.1002/anie.201400711CrossRefGoogle Scholar
  187. 187.
    B.J. Bergner, A. Schurmann, K. Peppler, A. Garsuch, J. Janek, TEMPO: a mobile catalyst for rechargeable Li-O(2) batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).  https://doi.org/10.1021/ja508400mCrossRefGoogle Scholar
  188. 188.
    H. Yamin, E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources 9, 281–287 (1983).  https://doi.org/10.1016/0378-7753(83)87029-3CrossRefGoogle Scholar
  189. 189.
  190. 190.
    J.T. Kummer, W. Neill, Google Patents, 1968Google Scholar
  191. 191.
    H. Danuta, U. Juliusz, Google Patents, 1962Google Scholar
  192. 192.
    E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, Lithium-sulfur battery: evaluation of dioxolane-based electrolytes. J. Electrochem. Soc. 136, 1621–1625 (1989).  https://doi.org/10.1149/1.2096981CrossRefGoogle Scholar
  193. 193.
    D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I.R. Gentle, G.Q.M. Lu, Carbon-sulfur composites for Li-S batteries: status and prospects. J. Mater. Chem. A 1, 9382–9394 (2013).  https://doi.org/10.1039/C3TA11045ACrossRefGoogle Scholar
  194. 194.
    S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013).  https://doi.org/10.1016/j.jpowsour.2012.12.102CrossRefGoogle Scholar
  195. 195.
    Q. Wang, J. Zheng, E. Walter, H. Pan, D. Lv, P. Zuo, H. Chen, Z.D. Deng, B.Y. Liaw, X. Yu, X. Yang, J.-G. Zhang, J. Liu, J. Xiao, Direct observation of sulfur radicals as reaction media in lithium-sulfur batteries. J. Electrochem. Soc. 162, A474–A478 (2015).  https://doi.org/10.1149/2.0851503jesCrossRefGoogle Scholar
  196. 196.
    J. Xiao, J.Z. Hu, H. Chen, M. Vijayakumar, J. Zheng, H. Pan, E.D. Walter, M. Hu, X. Deng, J. Feng, B.Y. Liaw, M. Gu, Z.D. Deng, D. Lu, S. Xu, C. Wang, J. Liu, Following the transient reactions in lithium–sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 15, 3309–3316 (2015).  https://doi.org/10.1021/acs.nanolett.5b00521CrossRefGoogle Scholar
  197. 197.
    Y. Xu, Y. Wen, Y. Zhu, K. Gaskell, K.A. Cychosz, B. Eichhorn, K. Xu, C. Wang, Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv. Funct. Mater. 25, 4312–4320 (2015).  https://doi.org/10.1002/adfm.201500983CrossRefGoogle Scholar
  198. 198.
    S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012).  https://doi.org/10.1016/j.electacta.2012.03.081CrossRefGoogle Scholar
  199. 199.
    X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).  https://doi.org/10.1038/nmat2460CrossRefGoogle Scholar
  200. 200.
    J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012).  https://doi.org/10.1002/anie.201107817CrossRefGoogle Scholar
  201. 201.
    C. Zhang, H.B. Wu, C. Yuan, Z. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. 124, 9730–9733 (2012).  https://doi.org/10.1002/ange.201205292CrossRefGoogle Scholar
  202. 202.
    Y. Cao, X. Li, I.A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 13, 7660–7665 (2011).  https://doi.org/10.1039/C0CP02477ECrossRefGoogle Scholar
  203. 203.
    G. Zhou, S. Pei, L. Li, D.-W. Wang, S. Wang, K. Huang, L.-C. Yin, F. Li, H.-M. Cheng, A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26, 625–631 (2014).  https://doi.org/10.1002/adma.201302877CrossRefGoogle Scholar
  204. 204.
    G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011).  https://doi.org/10.1021/nl2027684CrossRefGoogle Scholar
  205. 205.
    G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li, Z.W. Seh, Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265–1270 (2013).  https://doi.org/10.1021/nl304795gCrossRefGoogle Scholar
  206. 206.
    Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013).  https://doi.org/10.1038/ncomms2327CrossRefGoogle Scholar
  207. 207.
    Q. Pang, D. Kundu, M. Cuisinier, L. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014).  https://doi.org/10.1038/ncomms5759CrossRefGoogle Scholar
  208. 208.
    X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 127, 3979 (2015).  https://doi.org/10.1002/ange.201410174CrossRefGoogle Scholar
  209. 209.
    L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, J. Liu, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012).  https://doi.org/10.1002/adma.201103392CrossRefGoogle Scholar
  210. 210.
    Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 48, 8817–8819 (2012).  https://doi.org/10.1039/C2CC33945ECrossRefGoogle Scholar
  211. 211.
    H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J.J. Cha, W. Li, Z.W. Seh, M.T. McDowell, K. Yan, Z. Liang, Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014).  https://doi.org/10.1038/ncomms4943CrossRefGoogle Scholar
  212. 212.
    Z.W. Seh, J.H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 5, 5017 (2014).  https://doi.org/10.1038/ncomms6017CrossRefGoogle Scholar
  213. 213.
    X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 127, 3979–3983 (2015).  https://doi.org/10.1002/ange.201410174CrossRefGoogle Scholar
  214. 214.
    X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C.J. Hart, D. Houtarde, K. Kaup, H. Sommer, Tuning transition metal oxide–sulfur interactions for long life lithium-sulfur batteries: the “Goldilocks” principle. Adv. Energy Mater. 6, 1501636 (2016).  https://doi.org/10.1002/aenm.201501636CrossRefGoogle Scholar
  215. 215.
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015).  https://doi.org/10.1038/ncomms6682CrossRefGoogle Scholar
  216. 216.
    Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang, Y. Cui, Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015).  https://doi.org/10.1021/acs.nanolett.5b00367CrossRefGoogle Scholar
  217. 217.
    Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016).  https://doi.org/10.1021/acs.nanolett.5b04166CrossRefGoogle Scholar
  218. 218.
    M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015).  https://doi.org/10.1002/aenm.201401986CrossRefGoogle Scholar
  219. 219.
    D. Eroglu, K.R. Zavadil, K.G. Gallagher, Critical link between materials chemistry and cell-level design for high energy density and low cost lithium-sulfur transportation battery. J. Electrochem. Soc. 162, A982–A990 (2015).  https://doi.org/10.1149/2.0611506jesCrossRefGoogle Scholar
  220. 220.
    D. Lv, J. Zheng, Q. Li, X. Xie, S. Ferrara, Z. Nie, L.B. Mehdi, N.D. Browning, J.G. Zhang, G.L. Graff, High energy density lithium-sulfur batteries: challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015).  https://doi.org/10.1002/aenm.201402290CrossRefGoogle Scholar
  221. 221.
    Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar, A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630 (2017).  https://doi.org/10.1002/aenm.201601630CrossRefGoogle Scholar
  222. 222.
    G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015).  https://doi.org/10.1038/ncomms8760CrossRefGoogle Scholar
  223. 223.
    H. Pan, K.S. Han, M.H. Engelhard, R. Cao, J. Chen, J.G. Zhang, K.T. Mueller, Y. Shao, J. Liu, Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Funct. Mater., 1707234 (2018).  https://doi.org/10.1002/adfm.201707234CrossRefGoogle Scholar
  224. 224.
    H. Pan, J. Chen, R. Cao, V. Murugesan, N.N. Rajput, K.S. Han, K. Persson, L. Estevez, M.H. Engelhard, J.-G. Zhang, K.T. Mueller, Y. Cui, Y. Shao, J. Liu, Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2, 813–820 (2017).  https://doi.org/10.1038/s41560-017-0005-zCrossRefGoogle Scholar
  225. 225.
    J. Chen, W.A. Henderson, H. Pan, B.R. Perdue, R. Cao, J.Z. Hu, C. Wan, K.S. Han, K.T. Mueller, J.-G. Zhang, Y. Shao, J. Liu, Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017).  https://doi.org/10.1021/acs.nanolett.7b00417CrossRefGoogle Scholar
  226. 226.
    H. Nagata, Y. Chikusa, All-solid-state lithium–sulfur battery with high energy and power densities at the cell level. Energ. Technol. 4, 484–489 (2016).  https://doi.org/10.1002/ente.201500297CrossRefGoogle Scholar
  227. 227.
    T. Yamada, S. Ito, R. Omoda, T. Watanabe, Y. Aihara, M. Agostini, U. Ulissi, J. Hassoun, B. Scrosati, All solid-state lithium-sulfur battery using a glass-type P2S5–Li2S electrolyte: benefits on anode kinetics. J. Electrochem. Soc. 162, A646–A651 (2015).  https://doi.org/10.1149/2.0441504jesCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Energy and Environment DirectoratePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations