Multi-physics Simulation of Charge-Transfer Reaction and Mass Transport in Lithium-Ion Battery Cathode

  • Michihisa KoyamaEmail author
  • Baber Javed


The practical utilization of computer simulations is expected in many disciplines as results of advancements of computers, computer science, and simulation methods in the last decades. Perceptions of simulation technologies in the past would be that it rarely contributes to the practical battery developments; however, their use is expected to be inevitable in the battery research and development in the future. In this chapter, authors will introduce the multi-physics simulations of battery cathodes. An approach to modeling the complex microstructure of composite cathode is first introduced, followed by the discussion of the physical properties to be used in the simulation. The importance of interfacial resistance in the composite cathode is discussed on the basis of simulation results for lithium-ion battery cathode. Preliminary application of the approach to the solid-state battery system is also introduced. Finally, future directions are introduced.


Multi-physics simulation Li-ion battery Solid-state battery Cathode Interfacial resistance Finite element methods 



The part of the research is supported by JSPS KAKENHI Grant Number JP25709007 and MEXT Program for Integrated Materials Development. The authors wish to thank Dr. Kazunori Takada of National Institute for Materials Science and Prof. Kiyoshi Kanamura of Tokyo Metropolitan University for fruitful discussion.


  1. 1.
    K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, I. Uchida, Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J. Electrochem. Soc. 148(5), A422–A426 (2001)CrossRefGoogle Scholar
  2. 2.
    K. Dokko, M. Mohamedi, M. Umeda, I. Uchida, Kinetic study of Li-ion extraction and insertion at LiMn2O4 single particle electrodes using potential step and impedance methods. J. Electrochem. Soc. 150(4), A425–A429 (2003)CrossRefGoogle Scholar
  3. 3.
    A. Palencsár, D.A. Scherson, Electrochemical and in situ optical characterization of single micrometer-size particles of spherical nickel oxide in alkaline aqueous electrolytes. Electrochem. Solid-State Lett. 6(4), E1–E4 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Dokko, N. Nakata, K. Kanamura, High rate discharge capability of single particle electrode of LiCoO2. J. Power Sources 189(1), 783–785 (2009)CrossRefGoogle Scholar
  5. 5.
    H. Munakata, B. Takemura, T. Saito, K. Kanamura, Evaluation of real performance of LiFePO4 by using single particle technique. J. Power Sources 217, 444–448 (2012)CrossRefGoogle Scholar
  6. 6.
    Y.-H. Huang, F.-M. Wang, T.-T. Huang, J.-M. Chen, B.-J. Hwang, J. Rick, Micro-electrode linked cyclic voltammetry study reveals ultra-fast discharge and high ionic transfer behavior of LiFePO4. Int. J. Electrochem. Sci. 7, 1205–1213 (2012)Google Scholar
  7. 7.
    T. Li, B. Song, L. Lu, K. Zeng, Voltage induced electrochemical reactions in the single lithium-rich layer-oxide nanoparticles. Phys. Chem. Chem. Phys. 17(15), 10257–10264 (2015)CrossRefGoogle Scholar
  8. 8.
    P.R. Shearing, L.E. Howard, P.S. Jorgensen, N.P. Brandon, S.J. Harris, Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem. Commun. 12(3), 374–377 (2010)CrossRefGoogle Scholar
  9. 9.
    J.R. Wilson, J.S. Cronin, S.A. Barnett, S.J. Harris, Measurement of three-dimensional microstructure in a LiCoO2 positive electrode. J. Power Sources 196(7), 3443–3447 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Ender, J. Joos, T. Carraro, E. Ivers-Tiffe, Three-dimensional reconstruction of a composite cathode for lithium-ion cells. Electrochem. Commun. 13(2), 166–168 (2011)CrossRefGoogle Scholar
  11. 11.
    A.H. Wiedemann, G.M. Goldin, S.A. Barnett, H. Zhu, R.J. Kee, Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes. Electrochim. Acta 88, 580–588 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Hutzenlaub, S. Thiele, N. Paust, R. Spotnitz, R. Zengerle, C. Walchshofer, Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode. Electrochim. Acta 115, 131–139 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Yan, C. Lim, L. Yin, L. Zhu, Simulation of heat generation in a reconstructed LiCoO2 cathode during galvanostatic discharge. Electrochim. Acta 100, 171–179 (2013)CrossRefGoogle Scholar
  14. 14.
    B. Yan, C. Lim, L. Yin, L. Zhu, Three dimensional simulation of Galvanostatic discharge of LiCoO2 cathode based on X-ray Nano-CT images. J. Electrochem. Soc. 159(10), A1604–A1614 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Pietsch, V. Wood, X-ray tomography for Lithium ion battery research: A practical guide. Annu. Rev. Mater. Res. 47, 451–479 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Kikukawa, K. Honkura, M. Koyama, Influence of inter-particle resistance between active materials on the discharge characteristics of the positive electrode of lithium ion batteries. Electrochim. Acta 278, 385–395 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, C.A. Del Carpio, A. Miyamoto, Development of three-dimensional porous structure simulator for optimizing microstructure of SOFC anode. ECS Trans. 7(1), 2057–2064 (2007)CrossRefGoogle Scholar
  18. 18.
    C.W. Wang, A.M. Sastry, Mesoscale modeling of a Li-ion polymer cell. J. Electrochem. Soc. 154(11), A1035–A1047 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Koyama, K. Ogiya, T. Hattori, H. Fukunaga, A. Suzuki, R. Sahnoun, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, C.A. Del Carpio, A. Miyamoto, Development of three-dimensional porous structure simulator POCO2 for simulations of irregular porous materials. J. Comput. Chem. Jpn. 7(2), 55–62 (2008)CrossRefGoogle Scholar
  20. 20.
    G.M. Goldin, A.M. Colclasure, A.H. Widemann, R.J. Kee, Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models. Electrochim. Acta 64, 118–129 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Latz, J. Zausch, Multiscale modeling of lithium ion batteries: thermal aspects. Beilstein J. Nanotechnol. 6, 987–1007 (2015)CrossRefGoogle Scholar
  22. 22.
    R.E. García, Y.-M. Chiang, Spatially resolved modeling of microstructurally complex battery architectures. J. Electrochem. Soc. 154(9), A856–A864 (2007)CrossRefGoogle Scholar
  23. 23.
  24. 24. Accessed 8 Oct 2018
  25. 25.
    M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz, J.-M. Tarascon, Comparison of modeling predictions with experimental data from plastic Lithium ion cells. J. Electrochem. Soc. 143(6), 1890–1903 (1996)CrossRefGoogle Scholar
  26. 26.
    D.K. Karthikeyan, G. Sikha, R.E. White, Thermodynamic model development for lithium intercalation electrodes. J. Power Sources 185(2), 1398–1407 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Kanamura, Y. Yamada, K. Annaka, N. Nakata, H. Munakata, Electrochemical evaluation of active materials for Lithium ion batteries by one (single) particle measurement. Electrochemistry 84(10), 759–765 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Koyama, B. Javed, G. Inoue, Chapter 14, section 1, Chikuden Debaisu Niokeru Keisan Gijutsu No Katsuyo (Utilization of simulation technologies in storage devices), in Ritiumu Ion Denchi Niokeru Kouyouryouka, Koudenatsuka Gijutsu To Anzen Taisaku (Technologies for high capacity and high voltage and safety management in lithium-ion battery). (Technical Information Institute Co. Ltd., 2018 in press). (in Japanese) Published in Oct 2018. ISBN 978-4-86104-728-2Google Scholar
  29. 29.
    B. Javed, M. Koyama, G. Inoue, Three-dimensional model based simulation of the solid state batteries, ECS meeting abstracts, MA2018-02, 530, 2018Google Scholar
  30. 30.
    B. Javed, M. Koyama, Multi-physics Simulation of Solid-State Batteries with Active Material Coating, submittedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute for Materials ScienceGlobal Research Center for Environment and Energy Based on Nanomaterials ScienceTsukubaJapan
  2. 2.Center for Energy and Environmental ScienceShinshu UniversityNaganoJapan
  3. 3.Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations