Functionalized Ionic Liquid-Based Electrolytes for Li-Ion Batteries

  • Aarti Tiwari
  • Tharamani C. NagaiahEmail author
  • Debaprasad MandalEmail author
  • Santosh N. Chavan


Ionic liquids (ILs) are molten salts with an immense potential as an electrolyte in battery which fulfills the two most demanding aspects, negligible volatility, and non-flammability along with low melting temperature affecting their wide range applicability. Along with these aspects, ILs need suitable functionalization of the chosen cationic and/or anionic component for high stability within the working potential of the battery and suitable ionic conductivity. The chemistry of the substituent groups and the interaction between this cation and anion of an ionic liquid are the key to fine-tune the electrolyte. The present chapter deals with the functionalization of alkoxy (R–O–R) and siloxy (Si–O–Si) groups as substituents over the imidazolium cation. This modified cation was associated with an electronically diffused anion, N, N- bis(trifluoromethane)sulfonimide (TFSI, CF3SO2)2NH) to control the extent of cluster formation prevalent in the presence of high concentration of lithium-ion (Li+, 1 mol/kg solvent). This cluster formation regulates the viscosity which in turn controls the obtainable ionic conductivity essential for good charge-discharge characteristics. Another issue of high-energy electrodes reacting slowly with the ionic liquid electrolyte and requiring a long time for a stable solid electrolyte interface formation was addressed by using an organic additive, namely, propylene carbonate (PC, C4H6O3). The concept of a functionalized electrolyte mixture comprising of an ionic liquid, organic additive, and Li-ion source is pursued in depth, and its impact over the various parameters of the electrolyte was analyzed. The probable impact of these ionic liquid mixtures in the battery electrolyte was assessed both physical and electrochemical characterization. The functional applicability was finally tested by performing charge-discharge cycling in a compiled battery consisting of a graphite (C) anode and lithium cobalt(III) oxide (LiCoO2) cathode separated by the ionic liquid mixture soaked separator.


Li-ion battery Battery electrolyte Functionalized ionic liquid Battery testing 



This research is supported by the Department of Atomic Energy (DAE), India (2013/37C/57/BRNS). Dr. Tharamani C. Nagaiah thanks the Department of Science and Technology (DST) for the Ramanujan Fellowship (SR/S2/RJN-26/2012). Aarti Tiwari thanks IIT Ropar for Fellowship.

The authors thank the editors in allowing us to extend our previously published work [7] with new data from [8] based on our research and other cited works in the field.


  1. 1.
    M. Andrea, R. Greta, G. Matteo, R. Enzio, F. Giovanni, R. Guido, M. Valentina, The Local structure of ionic liquids: Cation–cation NOE interactions and internuclear distances in neat [BMIM][BF4] and [BDMIM][BF4]. Angew. Chem. Int. Ed. 45(7), 1123–1126 (2006). Scholar
  2. 2.
    M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)CrossRefGoogle Scholar
  4. 4.
    M.B. Armand, F.E.K.C.E. Moursli, Bis perhalogenoacyl -or sulfonyl-imides of alkali metals, their solid solutions with plastic materials and their use to the constitution of conductor elements for electrochemical generators: Google Patents (1985)Google Scholar
  5. 5.
    D. Baril, C. Michot, M. Armand, Electrochemistry of liquids vs. solids: Polymer electrolytes. Solid State Ionics 94(1), 35–47 (1997). Scholar
  6. 6.
    F. Capuano, F. Croce, B. Scrosati, Composite polymer electrolytes. J. Electrochem. Soc. 138(7), 1918–1922 (1991). Scholar
  7. 7.
    S.N. Chavan, D. Mandal, The combined effect of ether and siloxane substituents on imidazolium ionic liquids. RSC Adv. 5(80), 64821–64831 (2015). Scholar
  8. 8.
    S.N. Chavan, A. Tiwari, T.C. Nagaiah, D. Mandal, Ether and siloxane functionalized ionic liquids and their mixtures as an electrolyte for lithium-ion batteries. Phys. Chem. Chem. Phys. 18(24), 16116–16126 (2016). Scholar
  9. 9.
    F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692), 456–458 (1998)CrossRefGoogle Scholar
  10. 10.
    K. Dahl, G.M. Sando, D.M. Fox, T.E. Sutto, J.C. Owrutsky, Vibrational spectroscopy and dynamics of small anions in ionic liquid solutions. J. Chem. Phys. 123(8), 084504 (2005). Scholar
  11. 11.
    Y. Ein-Eli, S.F. McDevitt, D. Aurbach, B. Markovsky, A. Schechter, Methyl propyl carbonate: A promising single solvent for Li-Ion battery electrolytes. J. Electrochem. Soc. 144(7), L180–L184 (1997). Scholar
  12. 12.
    T. Endo, M. Imanari, H. Seki, K. Nishikawa, Effects of methylation at position 2 of cation ring on rotational dynamics of imidazolium-based ionic liquids investigated by NMR Spectroscopy: [C4mim]Br vs [C4C1mim]Br. Chem. A Eur. J. 115(14), 2999–3005 (2011). Scholar
  13. 13.
    T. Endo, T. Kato, K. Nishikawa, Effects of methylation at the 2 position of the cation ring on phase behaviors and conformational structures of imidazolium-based ionic liquids. J. Phys. Chem. B 114(28), 9201–9208 (2010). Scholar
  14. 14.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011). Scholar
  15. 15.
    S. Ferrari, E. Quartarone, C. Tomasi, D. Ravelli, S. Protti, M. Fagnoni, P. Mustarelli, Alkoxy substituted imidazolium-based ionic liquids as electrolytes for lithium batteries. J. Power Sources 235, 142–147 (2013). Scholar
  16. 16.
    T. Frömling, M. Kunze, M. Schönhoff, J. Sundermeyer, B. Roling, Enhanced lithium transference numbers in ionic liquid electrolytes. J. Phys. Chem. B 112(41), 12985–12990 (2008). Scholar
  17. 17.
    Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846), 520–523 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes. Electrochim. Acta 51(26), 5567–5580 (2006). Scholar
  19. 19.
    B. Garcia, S. Lavallée, G. Perron, C. Michot, M. Armand, Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta 49(26), 4583–4588 (2004). Scholar
  20. 20.
    R. Giernoth, Task-specific Ionic Liquids. Angew. Chem. Int. Ed. 49(16), 2834–2839 (2010). Scholar
  21. 21.
    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li Batteries. Chem. Mater. 22(3), 587–603 (2010). Scholar
  22. 22.
    J.B. Goodenough, K.-S. Park, The Li-Ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). Scholar
  23. 23.
    A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, K. Zaghib, Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and an organic electrolyte with enhanced safety and electrochemical performance. J. Power Sources 195(3), 845–852 (2010). Scholar
  24. 24.
    H.-B. Han, K. Liu, S.-W. Feng, S.-S. Zhou, W.-F. Feng, J. Nie, et al., Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties. Electrochim. Acta 55(23), 7134–7144 (2010). Scholar
  25. 25.
    S.T. Handy, M. Okello, The 2-Position of Imidazolium Ionic Liquids: Substitution and Exchange. J. Org. Chem. 70(5), 1915–1918 (2005). Scholar
  26. 26.
    P. Hapiot, C. Lagrost, Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108(7), 2238–2264 (2008). Scholar
  27. 27.
    K. Hayamizu, Y. Aihara, S. Arai, W.S. Price, Self-diffusion coefficients of lithium, anion, polymer, and solvent in polymer gel electrolytes measured using 7Li, 19F, and 1H pulsed-gradient spin-echo NMR. Electrochim. Acta 45(8), 1313–1319 (2000). Scholar
  28. 28.
    P.A. Hunt, Why Does a Reduction in Hydrogen Bonding Lead to an Increase in Viscosity for the 1-Butyl-2,3-dimethyl-imidazolium-Based Ionic Liquids? J. Phys. Chem. B 111(18), 4844–4853 (2007). Scholar
  29. 29.
    M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources 162(1), 658–662 (2006). Scholar
  30. 30.
    Y. Jin, S. Fang, M. Chai, L. Yang, S.-I. Hirano, Ether-Functionalized Trialkylimidazolium Ionic Liquids: Synthesis, Characterization, and Properties. Ind. Eng. Chem. Res. 51(34), 11011–11020 (2012). Scholar
  31. 31.
    Y. Jin, S. Fang, L. Yang, S.-I. Hirano, K. Tachibana, Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for a lithium battery. J. Power Sources 196(24), 10658–10666 (2011). Scholar
  32. 32.
    J. Kalhoff, D. Bresser, M. Bolloli, F. Alloin, J.-Y. Sanchez, S. Passerini, Enabling LiTFSI-based electrolytes for Safer Lithium-Ion Batteries by Using Linear Fluorinated Carbonates as (Co)Solvent. ChemSusChem 7(10), 2939–2946 (2014). Scholar
  33. 33.
    F. Kenta, M. Takushi, T. Toshiyuki, Y. Toshio, U. Yasuhiro, I. Shin-ich, Effect of Methylation at the C2 Position of Imidazolium on the Structure of Ionic Liquids Revealed by Large Angle X-ray Scattering Experiments and MD Simulations. Chem. Lett. 38(4), 340–341 (2009). Scholar
  34. 34.
    V.R. Koch, C. Nanjundiah, G.B. Appetecchi, B. Scrosati, The interfacial stability of Li with Two New Solvent-Free Ionic Liquids: 1,2-Dimethyl-3-propylimidazolium Imide and Methide. J. Electrochem. Soc. 142(7), L116–L118 (1995). Scholar
  35. 35.
    F. Koichi, W. Alexander, L. Ralf, Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew. Chem. Int. Ed. 47(45), 8731–8734 (2008). Scholar
  36. 36.
    A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries – An overview of electrochemical studies. J. Power Sources 194(2), 601–609 (2009). Scholar
  37. 37.
    C. Liao, N. Shao, K.S. Han, X.-G. Sun, D.-E. Jiang, E.W. Hagaman, S. Dai, Physicochemical properties of imidazolium-derived ionic liquids with different C-2 substitutions. Phys. Chem. Chem. Phys. 13(48), 21503–21510 (2011). Scholar
  38. 38.
    D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, et al., Energy applications of ionic liquids. Energy Environ. Sci. 7(1), 232–250 (2014). Scholar
  39. 39.
    K. Noack, P.S. Schulz, N. Paape, J. Kiefer, P. Wasserscheid, A. Leipertz, The role of the C2 position in interionic interactions of imidazolium-based ionic liquids: a vibrational and NMR spectroscopic study. Phys. Chem. Chem. Phys. 12(42), 14153–14161 (2010). Scholar
  40. 40.
    S. Pandian, S.G. Raju, K.S. Hariharan, S.M. Kolake, D.-H. Park, M.-J. Lee, Functionalized ionic liquids as electrolytes for lithium-ion batteries. J. Power Sources 286, 204–209 (2015). Scholar
  41. 41.
    M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries. J. Power Sources 195(24), 7904–7929 (2010). Scholar
  42. 42.
    J. Reiter, E. Paillard, L. Grande, M. Winter, S. Passerini, Physicochemical properties of N-methoxyethyl-N-methyl pyrrolidinium ionic liquids with perfluorinated anions. Electrochim. Acta 91, 101–107 (2013). Scholar
  43. 43.
    A.D. Robertson, A.R. West, A.G. Ritchie, Review of crystalline lithium-ion conductors suitable for high-temperature battery applications. Solid State Ionics 104(1), 1–11 (1997). Scholar
  44. 44.
    B. Scrosati, J. Garche, Lithium batteries: Status, prospects, and future. J. Power Sources 195(9), 2419–2430 (2010). Scholar
  45. 45.
    B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011). Scholar
  46. 46.
    S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, et al., Lithium secondary batteries using modified-Imidazolium Room-temperature ionic liquid. J. Phys. Chem. B 110(21), 10228–10230 (2006). Scholar
  47. 47.
    E.O. Stejskal, Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965). Scholar
  48. 48.
    K. Tsunashima, M. Sugiya, Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun. 9(9), 2353–2358 (2007). Scholar
  49. 49.
    T. Vogl, S. Menne, A. Balducci, Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys. 16(45), 25014–25023 (2014). Scholar
  50. 50.
    T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084 (1999). Scholar
  51. 51.
    M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976)CrossRefGoogle Scholar
  52. 52.
    A. Yoshino, K. Sanechika, T. Nakajima, Secondary battery: Google Patents (1987)Google Scholar
  53. 53.
    S. Zahn, G. Bruns, J. Thar, B. Kirchner, What keeps ionic liquids in flow? Phys. Chem. Chem. Phys. 10(46), 6921–6924 (2008). Scholar
  54. 54.
    S.S. Zhang, A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006). Scholar
  55. 55.
    H. Zhou, Y. Wang, H. Li, P. He, The Development of a new type of rechargeable batteries based on hybrid electrolytes. ChemSusChem 3(9), 1009–1019 (2010). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations