Advertisement

New, Game-Changing Applications of Polymer-Based Coatings in Battery

  • Claudiu B. BucurEmail author
Chapter

Abstract

Commercial lithium-ion batteries (265 Wh/kg) provide 6.5× more energy than lead acid and more than 2× that of nickel-metal hydride (NiMH). These large gains in energy density have ushered in the wide proliferation of portable electronics and the commercialization of long-range personal electric vehicles. Car manufacturing companies such as Tesla and Volkswagen propose that large-scale production of electric vehicles will lower the battery pack cost to $100/kWh (currently around $150/kWh). Such large-scale projects have already started and will be more prevalent by 2020. However, the success of the electric vehicle hinges on the safety, durability, and lifetime of the battery pack. These characteristics are critically important because the lithium-ion battery operates outside its electrochemical stability window. During charging, the electrolyte is exposed to potentials beyond its stability, so it reduces on the graphite anode and may oxidize on the cathode. The lowest unoccupied molecular orbital (LUMO) of the electrolyte is below the Fermi level of the anode, and the highest occupied molecular orbital (HOMO) of the electrolyte lies above the Fermi level of the cathode. In addition, cathode discharge products may have increased solubility in the electrolyte and may be lost during cycling. Thus, battery lifetime is governed by the degree with which these undesired reactions are mitigated. Polymers enable the simple deposition of thin and stable coatings on anodes, separators, and cathode materials which improve the electrochemical performance of the battery. The careful selection of polymers can solve many problems associated with promising new batteries, such as inhibiting dissolution of soluble electrode species and stabilizing electrolyte/electrode interfaces during operation. The end result is a higher energy density and longer cycle life for the battery.

References

  1. 1.
    H. Ai, M. Fang, S.A. Jones, Y.M. Lvov, Electrostatic layer-by-layer nanoassembly on biological microtemplates: platelets. Biomacromolecules 3, 560–564 (2002).  https://doi.org/10.1021/bm015659rCrossRefGoogle Scholar
  2. 2.
    C.B. Bucur, A. Lita, N. Osada, J. Muldoon, A soft, multilayered lithium–electrolyte interface. Energy Environ. Sci. 9, 112–116 (2016a).  https://doi.org/10.1039/C5EE03056KCrossRefGoogle Scholar
  3. 3.
    C.B. Bucur, J. Muldoon, A. Lita, A layer-by-layer supramolecular structure for a sulfur cathode. Energy Environ. Sci. 9, 992–998 (2016b).  https://doi.org/10.1039/C5EE02367JCrossRefGoogle Scholar
  4. 4.
    C.B. Bucur, M. Jones, M. Kopylov, et al., Inorganic–organic layer by layer hybrid membranes for lithium-sulfur batteries. Energy Environ. Sci. (2017).  https://doi.org/10.1039/C7EE00398FCrossRefGoogle Scholar
  5. 5.
    H.G. Buss, S.Y. Chan, N.A. Lynd, B.D. McCloskey, Nonaqueous polyelectrolyte solutions as liquid electrolytes with high lithium ion transference number and conductivity. ACS Energy Lett. 2, 481–487 (2017).  https://doi.org/10.1021/acsenergylett.6b00724CrossRefGoogle Scholar
  6. 6.
    Z. Cao, H. Meng, P. Dou, et al., Effects of solid polymer electrolyte coating on the composition and morphology of the solid electrolyte interphase on Sn anodes. J. Solid State Electrochem. 21, 955–966 (2017).  https://doi.org/10.1007/s10008-016-3440-zCrossRefGoogle Scholar
  7. 7.
    F. Caruso, R.A. Caruso, H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998a).  https://doi.org/10.1126/science.282.5391.1111CrossRefGoogle Scholar
  8. 8.
    F. Caruso, H. Lichtenfeld, M. Giersig, H. Möhwald, Electrostatic self-assembly of silica nanoparticle−polyelectrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc. 120, 8523–8524 (1998b).  https://doi.org/10.1021/ja9815024CrossRefGoogle Scholar
  9. 9.
    J. Chen, W. Li, J. Jiang, et al., Facile and creative design of hierarchical vanadium oxides@graphene nanosheet patterns. RSC Adv. 6, 13323–13327 (2016).  https://doi.org/10.1039/C5RA25521JCrossRefGoogle Scholar
  10. 10.
    J.H. Cheung, W.B. Stockton, M.F. Rubner, Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 30, 2712–2716 (1997).  https://doi.org/10.1021/ma970047dCrossRefGoogle Scholar
  11. 11.
    M. Chi, L. Shi, Z. Wang, et al., Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy 28, 1–11 (2016).  https://doi.org/10.1016/j.nanoen.2016.07.037CrossRefGoogle Scholar
  12. 12.
    E. Cho, J. Won, Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for a non-aqueous redox flow battery application. J. Power Sources 335, 12–19 (2016).  https://doi.org/10.1016/j.jpowsour.2016.10.020CrossRefGoogle Scholar
  13. 13.
    W.A. Christinelli, R. Gonçalves, E.C. Pereira, Optimization of electrochemical capacitor stability of poly(o-methoxyaniline)-poly(3-thiophene acetic acid) self-assembled films. Electrochim. Acta 196, 741–748 (2016).  https://doi.org/10.1016/j.electacta.2016.02.187CrossRefGoogle Scholar
  14. 14.
    G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).  https://doi.org/10.1126/science.277.5330.1232CrossRefGoogle Scholar
  15. 15.
    G. Decher, J. B. Schlenoff (eds.), Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd edn. (Wiley-VCH, Weinheim, 2012)Google Scholar
  16. 16.
    D. DeLongchamp, P.T. Hammond, Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices. Adv. Mater. 13, 1455–1459 (2001).  https://doi.org/10.1002/1521-4095(200110)13:19<1455::AID-ADMA1455>3.0.CO;2-7CrossRefGoogle Scholar
  17. 17.
    G. Ding, B. Qin, Z. Liu, et al., A polyborate coated cellulose composite separator for high-performance lithium-ion batteries. J. Electrochem. Soc. 162, A834–A838 (2015).  https://doi.org/10.1149/2.0261506jesCrossRefGoogle Scholar
  18. 18.
    P.T. Dirlam, R.S. Glass, K. Char, J. Pyun, The use of polymers in Li-S batteries: a review. J. Polym. Sci. A Polym. Chem. 55, 1635–1668 (2017).  https://doi.org/10.1002/pola.28551CrossRefGoogle Scholar
  19. 19.
    P. Dou, Z. Cao, J. Zheng, et al., Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high-performance lithium-ion battery anodes. J. Alloys Compd. 685, 690–698 (2016a).  https://doi.org/10.1016/j.jallcom.2016.05.218CrossRefGoogle Scholar
  20. 20.
    Y. Dou, J. Xu, B. Ruan, et al., Atomic layer-by-layer Co3O4/graphene composite for high-performance lithium-ion batteries. Adv. Energy Mater. (2016b).  https://doi.org/10.1002/aenm.201501835CrossRefGoogle Scholar
  21. 21.
    S.N. Eliseeva, O.V. Levin, E.G. Tolstopyatova, et al., Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries. Russ. J. Appl. Chem. 88, 1146–1149 (2015).  https://doi.org/10.1134/S1070427215070071CrossRefGoogle Scholar
  22. 22.
    T.R. Farhat, J.B. Schlenoff, Ion transport and equilibria in polyelectrolyte multilayers. Langmuir 17, 1184–1192 (2001).  https://doi.org/10.1021/la001298+CrossRefGoogle Scholar
  23. 23.
    T.R. Farhat, J.B. Schlenoff, Doping-controlled ion diffusion in polyelectrolyte multilayers: mass transport in reluctant exchangers. J. Am. Chem. Soc. 125, 4627–4636 (2003).  https://doi.org/10.1021/ja021448yCrossRefGoogle Scholar
  24. 24.
    H. Gao, B. Guo, J. Song, et al., A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries. Adv. Energy Mater. 5 (2015).  https://doi.org/10.1002/aenm.201402235CrossRefGoogle Scholar
  25. 25.
    M. Genovese, K. Lian, Polyoxometalate modified inorganic-organic nanocomposite materials for energy storage applications: a review. Curr. Opin. Solid State Mater. Sci. 19, 126–137 (2015).  https://doi.org/10.1016/j.cossms.2014.12.002CrossRefGoogle Scholar
  26. 26.
    R.A. Ghostine, J.B. Schlenoff, Ion diffusion coefficients through polyelectrolyte multilayers: temperature and charge dependence. Langmuir 27, 8241–8247 (2011).  https://doi.org/10.1021/la2015258CrossRefGoogle Scholar
  27. 27.
    F.S. Gittleson, D. Hwang, W.-H. Ryu, et al., Ultrathin nanotube/nanowire electrodes by spin–spray layer-by-layer assembly: a concept for transparent energy storage. ACS Nano 9, 10005–10017 (2015).  https://doi.org/10.1021/acsnano.5b03578CrossRefGoogle Scholar
  28. 28.
    S.-J. Gong, D. Kim, E. Cho, et al., A chitosan/urushi anion exchange membrane for a non–aqueous redox flow battery. ChemistrySelect 2, 1843–1849 (2017).  https://doi.org/10.1002/slct.201601772CrossRefGoogle Scholar
  29. 29.
    J. Grosse Austing, C. Nunes Kirchner, L. Komsiyska, G. Wittstock, Layer-by-layer modification of Nafion membranes for increased lifetime and efficiency of vanadium/air redox flow batteries. J. Membr. Sci. 510, 259–269 (2016).  https://doi.org/10.1016/j.memsci.2016.03.005CrossRefGoogle Scholar
  30. 30.
    K. Grygiel, J.-S. Lee, K. Sakaushi, et al., Thiazolium poly(ionic liquid)s: synthesis and application as binder for lithium-ion batteries. ACS Macro Lett. 4, 1312–1316 (2015).  https://doi.org/10.1021/acsmacrolett.5b00655CrossRefGoogle Scholar
  31. 31.
    S. Gupta, E. Heintzman, C. Price, Electrostatic layer-by-layer self-assembled graphene/multi-walled carbon nanotubes hybrid multilayers as efficient “all carbon” supercapacitors. J. Nanosci. Nanotechnol. 16, 4771–4782 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Han, D.-W. Kim, Y.-C. Kim, Charged polymer-coated separators by atmospheric plasma-induced grafting for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 26073–26081 (2016).  https://doi.org/10.1021/acsami.6b08781CrossRefGoogle Scholar
  33. 33.
    Y. Hishinuma, T. Ogihara, Preparation of silica glass films on the surface of polypropylene microporous membrane separators by dip coating with polysilazane and their application in lithium-ion batteries. J. Ceram. Soc. Jpn. 124, 480–483 (2016).  https://doi.org/10.2109/jcersj2.15306CrossRefGoogle Scholar
  34. 34.
    Y. Hu, X. Sun, Flexible rechargeable lithium-ion batteries: advances and challenges in materials and process technologies. J. Mater. Chem. A 2, 10712–10738 (2014).  https://doi.org/10.1039/C4TA00716FCrossRefGoogle Scholar
  35. 35.
    H.J. Hwang, W.S. Chi, O. Kwon, et al., Selective ion transporting polymerized ionic liquid membrane separator for enhancing cycle stability and durability in secondary zinc–air battery systems. ACS Appl. Mater. Interfaces 8, 26298–26308 (2016).  https://doi.org/10.1021/acsami.6b07841CrossRefGoogle Scholar
  36. 36.
    J.-W. Jeon, S.R. Kwon, F. Li, J.L. Lutkenhaus, Spray-on polyaniline/poly(acrylic acid) electrodes with enhanced electrochemical stability. ACS Appl. Mater. Interfaces 7, 24150–24158 (2015a).  https://doi.org/10.1021/acsami.5b07459CrossRefGoogle Scholar
  37. 37.
    J.-W. Jeon, S.R. Kwon, J.L. Lutkenhaus, Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J. Mater. Chem. A 3, 3757–3767 (2015b).  https://doi.org/10.1039/C4TA04697HCrossRefGoogle Scholar
  38. 38.
    B. Jiang, Y. He, B. Li, et al., Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew. Chem. Int. Ed. 56, 1869–1872 (2017).  https://doi.org/10.1002/anie.201611160CrossRefGoogle Scholar
  39. 39.
    R. Jin, Q. Wang, H. Li, et al., Polypyrrole layer coated MnOx/Fe2O3 nanotubes with an enhanced electrochemical performance for lithium ion batteries. Appl. Surf. Sci. 403, 62–70 (2017).  https://doi.org/10.1016/j.apsusc.2017.01.120CrossRefGoogle Scholar
  40. 40.
    M. Kim, W.J. Hyun, S.C. Mun, O.O. Park, Preparation of functional composite materials based on chemically derived graphene using the solution process. J. Phys. Conf. Ser. 602, 012027 (2015).  https://doi.org/10.1088/1742-6596/602/1/012027CrossRefGoogle Scholar
  41. 41.
    E.T. Kim, J. Park, C. Kim, et al., Conformal polymeric multilayer coatings on sulfur cathodes via the layer-by-layer deposition for high capacity retention in Li–S batteries. ACS Macro Lett. 5, 471–475 (2016a).  https://doi.org/10.1021/acsmacrolett.6b00144CrossRefGoogle Scholar
  42. 42.
    J.H. Kim, J. Seo, J. Choi, et al., Synergistic ultrathin functional polymer-coated carbon nanotube interlayer for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 8, 20092–20099 (2016b).  https://doi.org/10.1021/acsami.6b06190CrossRefGoogle Scholar
  43. 43.
    J.-H. Kim, H.-S. Woo, W.K. Kim, et al., Improved cycling performance of lithium–oxygen cells by use of a lithium electrode protected with conductive polymer and aluminum fluoride. ACS Appl. Mater. Interfaces 8, 32300–32306 (2016c).  https://doi.org/10.1021/acsami.6b10419CrossRefGoogle Scholar
  44. 44.
    M.S. Kim, L. Ma, S. Choudhury, et al., Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir–Blodgett process: application in lithium-sulfur batteries. J. Mater. Chem. A 4, 14709–14719 (2016d).  https://doi.org/10.1039/C6TA06018HCrossRefGoogle Scholar
  45. 45.
    J. Lee, W. Choi, Surface modification of sulfur cathodes with PEDOT: PSS conducting polymer in lithium-sulfur batteries. J. Electrochem. Soc. 162, A935–A939 (2015).  https://doi.org/10.1149/2.0651506jesCrossRefGoogle Scholar
  46. 46.
    J. Lee, W. Choi, Surface modification of over-lithiated layered oxides with PEDOT: PSS conducting polymer in lithium-ion batteries. J. Electrochem. Soc. 162(4), A743–A748 (2015). https://www.researchgate.net/publication/272377276_Surface_Modification_of_Over-Lithiated_Layered_Oxides_with_PEDOTPSS_Conducting_Polymer_in_Lithium-Ion_Batteries. Accessed 4 Apr 2017CrossRefGoogle Scholar
  47. 47.
    S.W. Lee, B.-S. Kim, S. Chen, et al., Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2009).  https://doi.org/10.1021/ja807059kCrossRefGoogle Scholar
  48. 48.
    Y.-S. Lee, W.-K. Shin, A.G. Kannan, et al., Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer. ACS Appl. Mater. Interfaces 7, 13944–13951 (2015).  https://doi.org/10.1021/acsami.5b02690CrossRefGoogle Scholar
  49. 49.
    H.-Y. Lee, Y. Jung, S. Kim, Conducting polymer coated graphene oxide electrode for rechargeable lithium-sulfur batteries. J. Nanosci. Nanotechnol. 16, 2692–2695 (2016).  https://doi.org/10.1166/jnn.2016.11061CrossRefGoogle Scholar
  50. 50.
    F.-S. Li, Y.-S. Wu, J. Chou, et al., A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Adv. Mater. 27, 130–137 (2015a).  https://doi.org/10.1002/adma.201403880CrossRefGoogle Scholar
  51. 51.
    F.-S. Li, Y.-S. Wu, J. Chou, N.-L. Wu, A dimensionally stable and fast-discharging graphite–silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating. Chem. Commun. 51, 8429–8431 (2015b).  https://doi.org/10.1039/C4CC09825KCrossRefGoogle Scholar
  52. 52.
    W.-J. Li, S.-L. Chou, J.-Z. Wang, et al., Multifunctional conducting polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy 13, 200–207 (2015c).  https://doi.org/10.1016/j.nanoen.2015.02.019CrossRefGoogle Scholar
  53. 53.
    Y. Li, L. Yuan, Z. Li, et al., Improving the electrochemical performance of a lithium-sulfur battery with a conductive polymer-coated sulfur cathode. RSC Adv. 5, 44160–44164 (2015d).  https://doi.org/10.1039/C5RA05481HCrossRefGoogle Scholar
  54. 54.
    Y. Li, B. Xu, H. Xu, et al., Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017).  https://doi.org/10.1002/anie.201608924CrossRefGoogle Scholar
  55. 55.
    J.-Y. Liao, S.-M. Oh, A. Manthiram, Core/double-shell type gradient Ni-rich LiNi0.76Co0.10Mn0.14O2 with high capacity and long cycle life for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 24543–24549 (2016).  https://doi.org/10.1021/acsami.6b06172CrossRefGoogle Scholar
  56. 56.
    S. Lim, R. Lilly Thankamony, T. Yim, et al., Surface modification of sulfur electrodes by chemically anchored cross-linked polymer coating for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 7, 1401–1405 (2015).  https://doi.org/10.1021/am508528pCrossRefGoogle Scholar
  57. 57.
    J. Liu, D.G.D. Galpaya, L. Yan, et al., Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. (2016).  https://doi.org/10.1039/C6EE03033ECrossRefGoogle Scholar
  58. 58.
    L. Luo, S.-H. Chung, A. Manthiram, A trifunctional multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG)-coated separator through a layer-by-layer coating strategy for high-energy Li–S batteries. J. Mater. Chem. A 4, 16805–16811 (2016).  https://doi.org/10.1039/C6TA07709ACrossRefGoogle Scholar
  59. 59.
    J. Luo, R.-C. Lee, J.-T. Jin, et al., A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li–S batteries. Chem. Commun. 53, 963–966 (2017).  https://doi.org/10.1039/C6CC09248ACrossRefGoogle Scholar
  60. 60.
    R. Mo, S.O. Tung, Z. Lei, et al., Pushing the limits: 3D layer-by-layer-assembled composites for cathodes with 160 C discharge rates. ACS Nano 9, 5009–5017 (2015a).  https://doi.org/10.1021/nn507186kCrossRefGoogle Scholar
  61. 61.
    R. Mo, F. Zhang, Y. Du, et al., Sandwich nanoarchitecture of LiV3O8/graphene multilayer nanomembranes via layer-by-layer self-assembly for long-cycle-life lithium-ion battery cathodes. J. Mater. Chem. A 3, 13717–13723 (2015b).  https://doi.org/10.1039/C5TA02562ACrossRefGoogle Scholar
  62. 62.
    S. Moon, Y.H. Jung, D.K. Kim, Enhanced the electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries. J. Power Sources 294, 386–392 (2015).  https://doi.org/10.1016/j.jpowsour.2015.06.011CrossRefGoogle Scholar
  63. 63.
    J. Muldoon, C.B. Bucur, N. Boaretto, et al., Polymers: opening doors to future batteries. Polym. Rev. 55, 208–246 (2015).  https://doi.org/10.1080/15583724.2015.1011966CrossRefGoogle Scholar
  64. 64.
    W. Na, A.S. Lee, J.H. Lee, et al., Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl. Mater. Interfaces 8, 12852–12858 (2016).  https://doi.org/10.1021/acsami.6b02735CrossRefGoogle Scholar
  65. 65.
    W. Ni, D. Yang, J. Cheng, et al., Gel-type polymer separator with higher thermal stability and effective overcharge protection of 4.2 V for secondary lithium-ion batteries. RSC Adv. 6, 52966–52973 (2016).  https://doi.org/10.1039/C6RA11638HCrossRefGoogle Scholar
  66. 66.
    S. Niu, W. Lv, G. Zhou, et al., Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery. Nano Energy 30, 138–145 (2016).  https://doi.org/10.1016/j.nanoen.2016.09.044CrossRefGoogle Scholar
  67. 67.
    M.M. Obadia, E. Drockenmuller, Poly(1,2,3-triazolium)s: a new class of functional polymer electrolytes. Chem. Commun. 52, 2433–2450 (2016).  https://doi.org/10.1039/C5CC09861KCrossRefGoogle Scholar
  68. 68.
    L. Pan, H. Wang, C. Wu, et al., Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 16003–16010 (2015).  https://doi.org/10.1021/acsami.5b04245CrossRefGoogle Scholar
  69. 69.
    L. Porcarelli, A.S. Shaplov, M. Salsamendi, et al., Single-ion block copoly(ionic liquid)s as electrolytes for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 8, 10350–10359 (2016).  https://doi.org/10.1021/acsami.6b01973CrossRefGoogle Scholar
  70. 70.
    Q. Qu, F. Qian, S. Yang, et al., Layer-by-layer polyelectrolyte assisted growth of 2D ultrathin MoS2 nanosheets on various 1D carbons for superior Li-storage. ACS Appl. Mater. Interfaces 8, 1398–1405 (2016).  https://doi.org/10.1021/acsami.5b10497CrossRefGoogle Scholar
  71. 71.
    J.B. Schlenoff, H. Ly, M. Li, Charge and mass balance in polyelectrolyte multilayers. J. Am. Chem. Soc. 120, 7626–7634 (1998).  https://doi.org/10.1021/ja980350+CrossRefGoogle Scholar
  72. 72.
    S.M. Seidel, S. Jeschke, P. Vettikuzha, H.-D. Wiemhöfer, PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium-ion batteries. Chem. Commun. 51, 12048–12051 (2015).  https://doi.org/10.1039/C5CC04424CCrossRefGoogle Scholar
  73. 73.
    C. Shi, J. Dai, S. Huang, et al., A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membr. Sci. 518, 168–177 (2016).  https://doi.org/10.1016/j.memsci.2016.06.046CrossRefGoogle Scholar
  74. 74.
    W.-K. Shin, A.G. Kannan, D.-W. Kim, Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces 7, 23700–23707 (2015a).  https://doi.org/10.1021/acsami.5b07730CrossRefGoogle Scholar
  75. 75.
    W.-K. Shin, J.-H. Yoo, D.-W. Kim, Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries. J. Power Sources 279, 737–744 (2015b).  https://doi.org/10.1016/j.jpowsour.2015.01.047CrossRefGoogle Scholar
  76. 76.
    W.B. Stockton, M.F. Rubner, Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30, 2717–2725 (1997).  https://doi.org/10.1021/ma9700486CrossRefGoogle Scholar
  77. 77.
    G.B. Sukhorukov, E. Donath, H. Lichtenfeld, et al., Layer-by-layer self-assembly of polyelectrolytes on colloidal particles. Colloids Surf. A Physicochem. Eng. Asp. 137, 253–266 (1998).  https://doi.org/10.1016/S0927-7757(98)00213-1CrossRefGoogle Scholar
  78. 78.
    Y. Sun, J. Lopez, H.-W. Lee, et al., A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer. Adv. Mater. 28, 2455–2461 (2016).  https://doi.org/10.1002/adma.201504723CrossRefGoogle Scholar
  79. 79.
    H. Tan, K. Huang, Y. Bao, et al., Rationally designed layer-by-layer structure of Fe3O4 nanospheres@MWCNTs/graphene as an electrode for lithium-ion batteries with enhanced electrochemical performance. J. Alloys Compd. 699, 812–817 (2017).  https://doi.org/10.1016/j.jallcom.2016.12.393CrossRefGoogle Scholar
  80. 80.
    S.-O. Tung, S. Ho, M. Yang, et al., A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).  https://doi.org/10.1038/ncomms7152CrossRefGoogle Scholar
  81. 81.
    H. Wang, L. Pan, C. Wu, et al., Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries. J. Mater. Chem. A 3, 20535–20540 (2015a).  https://doi.org/10.1039/C5TA06381GCrossRefGoogle Scholar
  82. 82.
    L. Wang, B. Gao, C. Peng, et al., Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale 7, 13840–13847 (2015b).  https://doi.org/10.1039/C5NR02578HCrossRefGoogle Scholar
  83. 83.
    Y. Wang, Q. Qu, Y. Han, et al., Robust 3D nanowebs assembled from interconnected and sandwich-like C@Fe3O4@C coaxial nanocables for enhanced Li-ion storage. J. Mater. Chem. A 4, 10314–10320 (2016).  https://doi.org/10.1039/C6TA03118HCrossRefGoogle Scholar
  84. 84.
    F. Wu, J. Li, Y. Su, et al., Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries. Nano Lett. 16, 5488–5494 (2016a).  https://doi.org/10.1021/acs.nanolett.6b01981CrossRefGoogle Scholar
  85. 85.
    F. Wu, J. Liu, L. Li, et al., Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer. ACS Appl. Mater. Interfaces 8, 23095–23104 (2016b).  https://doi.org/10.1021/acsami.6b07431CrossRefGoogle Scholar
  86. 86.
    J. Xi, W. Dai, L. Yu, Polydopamine coated SPEEK membrane for a vanadium redox flow battery. RSC Adv. 5, 33400–33406 (2015).  https://doi.org/10.1039/C5RA01486GCrossRefGoogle Scholar
  87. 87.
    W. Xu, Z. Wang, L. Shi, et al., Layer-by-layer deposition of organic-inorganic hybrid multilayer on microporous polyethylene separator to enhance the electrochemical performance of lithium-ion battery. ACS Appl. Mater. Interfaces 7, 20678–20686 (2015).  https://doi.org/10.1021/acsami.5b05457CrossRefGoogle Scholar
  88. 88.
    Y. Xu, Q. Wei, C. Xu, et al., Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6 (2016).  https://doi.org/10.1002/aenm.201600389CrossRefGoogle Scholar
  89. 89.
    R. Xu, X. Huang, X. Lin, et al., The functional aqueous slurry coated separator using polyvinylidene fluoride powder particles for lithium-ion batteries. J. Electroanal. Chem. 786, 77–85 (2017).  https://doi.org/10.1016/j.jelechem.2017.01.016CrossRefGoogle Scholar
  90. 90.
    J. Yan, X. Liu, B. Li, Nano-assembled Na2FePO4F/carbon nanotube multi-layered cathodes for Na-ion batteries. Electrochem. Commun. 56, 46–50 (2015a).  https://doi.org/10.1016/j.elecom.2015.04.009CrossRefGoogle Scholar
  91. 91.
    J. Yan, X. Liu, M. Yao, et al., Long-life, high-efficiency lithium–sulfur battery from a nanoassembled cathode. Chem. Mater. 27, 5080–5087 (2015b).  https://doi.org/10.1021/acs.chemmater.5b01780CrossRefGoogle Scholar
  92. 92.
    M. Yan, Y. Zhang, Y. Li, et al., Manganese dioxide nanosheet functionalized sulfur@PEDOT core-shell nanospheres for advanced lithium-sulfur batteries. J. Mater. Chem. A 4, 9403–9412 (2016).  https://doi.org/10.1039/C6TA03211GCrossRefGoogle Scholar
  93. 93.
    H. Yan, G. Zhang, Y. Li, Synthesis and characterization of advanced Li3V2(PO4)3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries. Appl. Surf. Sci. 393, 30–36 (2017).  https://doi.org/10.1016/j.apsusc.2016.09.156CrossRefGoogle Scholar
  94. 94.
    C. Yang, H. Wei, L. Guan, et al., Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J. Mater. Chem. A 3, 14929–14941 (2015a).  https://doi.org/10.1039/C5TA02707ACrossRefGoogle Scholar
  95. 95.
    X. Yang, L. Shen, B. Wu, et al., Improvement of the cycling performance of LiCoO2 with the assistance of cross-linked PAN for lithium-ion batteries. J. Alloys Compd. 639, 458–464 (2015b).  https://doi.org/10.1016/j.jallcom.2015.03.153CrossRefGoogle Scholar
  96. 96.
    Q. Yang, J. Wu, K. Huang, et al., Layer-by-layer self-assembly of graphene-like Co3O4 nanosheet/graphene hybrids: towards high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 667, 29–35 (2016).  https://doi.org/10.1016/j.jallcom.2016.01.136CrossRefGoogle Scholar
  97. 97.
    H.Y. Yoo, A. Heo, C.G. Cho, Crosslinkable layer-by-layer assembled sulfonated poly(phenylene oxide) membrane based on Nafion for vanadium redox flow battery. J. Nanosci. Nanotechnol. 16, 10515–10519 (2016).  https://doi.org/10.1166/jnn.2016.13186CrossRefGoogle Scholar
  98. 98.
    Z. Yuan, X. Zhu, M. Li, et al., A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. 128, 3110–3114 (2016).  https://doi.org/10.1002/ange.201510849CrossRefGoogle Scholar
  99. 99.
    Y. Zhai, K. Xiao, J. Yu, B. Ding, Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium-ion batteries with enhanced thermostability and improved electrolyte wettability. J. Power Sources 325, 292–300 (2016).  https://doi.org/10.1016/j.jpowsour.2016.06.050CrossRefGoogle Scholar
  100. 100.
    J. Zhang, Y. Xu, L. Fan, et al., Graphene–encapsulated selenium/polyaniline core-shell nanowires with an enhanced electrochemical performance for Li–Se batteries. Nano Energy 13, 592–600 (2015a).  https://doi.org/10.1016/j.nanoen.2015.03.028CrossRefGoogle Scholar
  101. 101.
    Z. Zhang, Z. Zhang, J. Li, Y. Lai, Polydopamine-coated separator for high-performance lithium-sulfur batteries. J. Solid State Electrochem. 19, 1709–1715 (2015b).  https://doi.org/10.1007/s10008-015-2797-8CrossRefGoogle Scholar
  102. 102.
    H. Zhang, S. Jing, Y. Hu, et al., A flexible freestanding Si/rGO hybrid film anode for stable Li-ion batteries. J. Power Sources 307, 214–219 (2016).  https://doi.org/10.1016/j.jpowsour.2015.12.107CrossRefGoogle Scholar
  103. 103.
    Y. Zhao, N.B. Mercier, H.R. Byon, An aqueous lithium–iodine battery with solid polymer electrolyte-coated metallic lithium anode. ChemPlusChem 80, 344–348 (2015).  https://doi.org/10.1002/cplu.201402038CrossRefGoogle Scholar
  104. 104.
    Y. Zhao, Z. Yuan, W. Lu, et al., The porous membrane with tunable performance for vanadium flow battery: the effect of charge. J. Power Sources 342, 327–334 (2017).  https://doi.org/10.1016/j.jpowsour.2016.12.058CrossRefGoogle Scholar
  105. 105.
    G. Zheng, C. Wang, A. Pei, et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).  https://doi.org/10.1021/acsenergylett.6b00456CrossRefGoogle Scholar
  106. 106.
    G. Zhou, L. Li, D.-W. Wang, et al., A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv. Mater. 27, 641–647 (2015).  https://doi.org/10.1002/adma.201404210CrossRefGoogle Scholar
  107. 107.
    Y. Zhou, Y. Li, J. Yang, et al., Conductive polymer-coated VS4 submicrospheres as advanced electrode materials in lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 18797–18805 (2016).  https://doi.org/10.1021/acsami.6b04444CrossRefGoogle Scholar
  108. 108.
    Y. Zhu, C. Yao, J. Ren, et al., Graphene improved electrochemical property in self-healing multilayer polyelectrolyte film. Colloids Surf. A Physicochem. Eng. Asp. 465, 26–31 (2015).  https://doi.org/10.1016/j.colsurfa.2014.10.035CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Toyota Research Institute of North AmericaAnn ArborUSA

Personalised recommendations