Advertisement

Mechanik 4.0. Künstliche Intelligenz zur Analyse mechanischer Systeme

  • Arnd Koeppe
  • Daniel F. Hesser
  • Marion Mundt
  • Franz Bamer
  • Bernd MarkertEmail author
Chapter
  • 443 Downloads

Zusammenfassung

Die Digitalisierung der Industrie im Rahmen von „Industrie 4.0“ umfasst vier Standbeine: Vernetzung, Informationstransparenz, Dezentrale Entscheidungen und Technische Assistenz (Hermann et al. 2016). Insbesondere die Fähigkeit Entscheidungen dezentral – basierend auf relevanten Informationen – zu fällen und die Bereitstellung informierter, digitaler Assistenzsysteme benötigen Methoden zur Analyse physikalischer Systeme. Die Analyse physikalischer Systeme in der Industrie ist ein klassisches Anwendungsgebiet der Mechanik und erfordert genaue Messungen, Beschreibungen und Interpretationen der Zustände mechanischer Systeme. In einer neuen Mechanik 4.0 werden Methoden der Künstlichen Intelligenz eingsetzt, um das Verhalten mechanischer Systeme zu beschreiben und deren Zustände zu interpretieren. Dadurch können numerische Simulationsverfahren beschleunigt, dynamisches Verhalten vorhergesagt und Zustände von Strukturen überwacht werden.

Literatur

  1. Bamer F, Koeppe A, Markert B (2017) An efficient Monte Carlo simulation strategy based on model order reduction and artificial neural networks. Proc Appl Math Mech 17:287–288.  https://doi.org/10.1002/pamm.201710113CrossRefGoogle Scholar
  2. Bathe K-J (1996) Finite element procedures. Prentice Hall, Englewood CliffsGoogle Scholar
  3. Bishop CM (1995) Neural networks for pattern recognition. Clarendon Press, OxfordGoogle Scholar
  4. Bosch Media Service (2019) Old machine + rapid connectivity = new benefit. https://www.bosch-presse.de/pressportal/de/en/old-machine-rapid-connectivity-new-benefit-69632.html. Zugegriffen am 30.01.2019
  5. Cao B-T, Freitag S, Meschke G (2016) A hybrid RNN-GPOD surrogate model for real-time settlement predictions in mechanised tunnelling. Adv Model Simul Eng Sci 3:5.  https://doi.org/10.1186/s40323-016-0057-9CrossRefGoogle Scholar
  6. Curie J, Curie P (1880) Development, via compression, of electric polarization in hemihedral crystals with inclined faces. Bulletin de la Societe de Minerologique de France 3:90–93Google Scholar
  7. Curie J, Curie P (1881) Contractions and expansions produced by voltages in hemihedral crystals with inclined faces. Comptes Rendus 93:1137–1140Google Scholar
  8. Ehlers W, Markert B (2001) A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J Biomech Eng 123:418–424CrossRefGoogle Scholar
  9. Ehlers W, Karajan N, Markert B (2009) An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech Model Mechanobiol 8:233–251CrossRefGoogle Scholar
  10. Freitag S, Graf W, Kaliske M, Sickert J-U (2011) Prediction of time-dependent structural behaviour with recurrent neural networks for fuzzy data. Comput Struct Civil-Comp 89:1971–1981.  https://doi.org/10.1016/j.compstruc.2011.05.013CrossRefGoogle Scholar
  11. Freitag S, Cao BT, Ninić J, Meschke G (2017) Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes. Comput Struct.  https://doi.org/10.1016/j.compstruc.2017.03.020
  12. Gers FA, Schmidhuber J, Cummins F (1999) Learning to forget: continual prediction with LSTM. IET, 850–855.  https://doi.org/10.1049/cp:19991218
  13. Ghaboussi J, Sidarta DE (1998) New nested adaptive neural networks (NANN) for constitutive modeling. Comput Geotech 22:29–52.  https://doi.org/10.1016/S0266-352X(97)00034-7CrossRefGoogle Scholar
  14. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MAGoogle Scholar
  15. Graf W, Freitag S, Kaliske M, Sickert J-U (2010) Recurrent neural networks for uncertain time-dependent structural behavior. Comput Aided Civ Inf Eng 25:322–323.  https://doi.org/10.1111/j.1467-8667.2009.00645.xCrossRefGoogle Scholar
  16. Heidling E, Meil P, Neumer J, Porschen-Hueck S, Schmierl K, Sopp P, Wagner A (2019) Ingenieurinnen und Ingenieure für Industrie 4.0, Impuls. IMPULS-Stiftung für den Maschinenbau, den Anlagenbau und die Informationstechnik. MünchenGoogle Scholar
  17. Hermann M, Pentek T, Otto B (2016) Design Principles for Industrie 4.0 Scenarios. In: 2016 49th Hawaii International Conference on System Sciences (HICSS). Presented at the 2016 49th Hawaii International Conference on System Sciences (HICSS), S 3928–3937.  https://doi.org/10.1109/HICSS.2016.488
  18. Hesser DF, Markert B (2018) Guided wave-based damage detection in solids using computational intelligence. PAMM 18:e201800296.  https://doi.org/10.1002/pamm.201800296CrossRefGoogle Scholar
  19. Hesser DF, Markert B (2019) Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manuf Lett 19:1–4.  https://doi.org/10.1016/j.mfglet.2018.11.001CrossRefGoogle Scholar
  20. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780.  https://doi.org/10.1162/neco.1997.9.8.1735CrossRefGoogle Scholar
  21. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRefGoogle Scholar
  22. Javadi AA, Tan TP, Elkassas ASI (2009) Intelligent finite element method and application to simulation of behavior of soils under cyclic loading. In: Abraham A, Hassanien A-E, Snášel V (Hrsg) Foundations of computational intelligence. Studies in computational intelligence, Bd 5. Springer, Berlin/Heidelberg, S 317–338Google Scholar
  23. Koeppe A, Bamer F, Markert B (2016) Model reduction and submodelling using neural networks. Proc Appl Math Mech 16:537–538.  https://doi.org/10.1002/pamm.201610257CrossRefGoogle Scholar
  24. Koeppe A, Bamer F, Hernandez Padilla CA, Markert B (2017) Neural network representation of a phase-field model for brittle fracture. Proc Appl Math Mech 17:253–254.  https://doi.org/10.1002/pamm.201710096CrossRefGoogle Scholar
  25. Koeppe A, Bamer F, Markert B (2018a) An intelligent meta-element for linear elastic continua. PAMM 18:e201800283.  https://doi.org/10.1002/pamm.201800283CrossRefGoogle Scholar
  26. Koeppe A, Hernandez Padilla CA, Voshage M, Schleifenbaum JH, Markert B (2018b) Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks. Manuf Lett.  https://doi.org/10.1016/j.mfglet.2018.01.002
  27. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2324.  https://doi.org/10.1109/5.726791CrossRefGoogle Scholar
  28. LeCun Y, Bottou L, Geneviève BO, Klaus-Robert M (2012) Efficient BackProp. In: Grégoire M, Geneviève BO, Klaus-Robert M (Hrsg) Neural networks: tricks of the trade, Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, S 9–48Google Scholar
  29. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444.  https://doi.org/10.1038/nature14539CrossRefGoogle Scholar
  30. Markert B (2005) Porous media viscoelasticity with application to polymeric foams. Report/Universität Stuttgart, Institut für Mechanik (Bauwesen), Lehrstuhl II. Glückauf, EssenGoogle Scholar
  31. Markert B (2007) A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transp Porous Media 70:427–450CrossRefGoogle Scholar
  32. Oeser M, Freitag S (2009) Modeling of materials with fading memory using neural networks. Int J Numer Meth Engng 78:843–862.  https://doi.org/10.1002/nme.2518CrossRefGoogle Scholar
  33. Russell SJ, Norvig P, Davis E (2010) Artificial intelligence: a modern approach. Prentice Hall series in artificial intelligence, 3. Aufl. Prentice Hall, Upper Saddle RiverGoogle Scholar
  34. Sabatini AM (2006) Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng 53:1346–1356.  https://doi.org/10.1109/TBME.2006.875664CrossRefGoogle Scholar
  35. Schölkopf B, Smola AJ, Scholkopf MD of the M.P.I. for B.C. in T.G.P.B., Bach F (2002) Learning with kernelsl regularization, optimization, and beyond. MIT Press, Cambridge, MAGoogle Scholar
  36. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489.  https://doi.org/10.1038/nature16961CrossRefGoogle Scholar
  37. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550:354–359.  https://doi.org/10.1038/nature24270CrossRefGoogle Scholar
  38. Stoffel M, Bamer F, Markert B (2018) Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Struct 131:102–106.  https://doi.org/10.1016/j.tws.2018.06.035CrossRefGoogle Scholar
  39. de Vries WHK, Veeger HEJ, Baten CTM, van der Helm FCT (2009) Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 29:535–541.  https://doi.org/10.1016/j.gaitpost.2008.12.004CrossRefGoogle Scholar
  40. Williams RJ (1992) Training recurrent networks using the extended Kalman filter. In: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks. Presented at the [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, S 241–246, vol. 4.  https://doi.org/10.1109/IJCNN.1992.227335
  41. Xiao S, Stacklies W, Cetinkaya M, Markert B, Gräter F (2009) Mechanical response of silk crystalline units from force-distribution analysis. Biophys J 96:3997–4005CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Arnd Koeppe
    • 1
  • Daniel F. Hesser
    • 1
  • Marion Mundt
    • 1
  • Franz Bamer
    • 1
  • Bernd Markert
    • 1
    Email author
  1. 1.RWTH Aachen University, Institut für Allgemeine MechanikAachenDeutschland

Personalised recommendations